Вейвлет і мультифрактальний аналіз нелінійних структур у хаотичних процесах для гідроекологічних систем

Автори: М.Г. Сербов, А.А. Свинаренко, О.Ю. Хецеліус, О.М. Грушевський

Рік: 2015

Число: 16

Сторінки: 171-175

Анотація

Представлена робота продовжує наші дослідження фрактальних структур в хаотичних і турбулентних процесах і пов’язана з великою актуальністю і важливістю експериментального і теоретичного вивчення нелінійних хаотичних динамічних систем з метою виявлення фрактальних структур і властивостей та елементів динамічного хаосу. На основі вейвлет-аналізу та мультифрактального формалізму здійснюється аналіз фрактальних структур в хаотичних процесах (часові ряди концентрацій нітратів для вододілу Svidník-Ondrava Малих Карпат у Східній Словаччині) і обчислено відповідний спектр фрактальних розмірностей. Виконано чисельне моделювання та проведено порівняння теоретичних даних з раніше отриманими оцінками на основі інших алгоритмів фрактального аналізу.

Теги: гідрологічні системи; фрактальні структури; хаотичні процеси часові ряди концентрацій нітратів

Список літератури

  1. Svinarenko A.A., Khetselius O.Yu., Mansarliysky V.F., Romanenko S.I. Analysis of the fractal structures in turbulent processes. Ukr. gìdrometeorol. ž – Ulrainian Hydrometeorology Journal, 2014, no. 15, pp. 74-78.
  2. Khetselius O.Yu., Svinarenko A.A. Analysis of the fractal structures in wave processes. Vìsn. Odes. derž. ekol. unìv.– Bulletin of Odessa state environmental university, 2013, vol. 16, pp. 222-226.
  3. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The Mandelbrot B. Fractal geometry of nature. Moscow: Mir, 2002.
  4. Schertzer D., Lovejoy S. Fractals: Physical Origin and Properites. N.-Y.: Plenum Press, 1990, pp. 71-92. (Ed.: Peitronero L.)
  5. Zaslavsky G.M. Stochasticity of dynamical systems. Moscow: Nauka, 1998.
  6. Zosimov V.V., Lyamshev L.M. Fractals in wave processes. Phys.Uspekhi, 1995, vol.165, pp. 361–402.
  7. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D., 1983, vol. 9, pp. 189-208.
  8. Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations. Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics. Berlin: Springer, 1979, no. 730, pp. 204-227. (Eds: H.-O. Peitgen, H.-O. Walter)
  9. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series. Phys. Rev. Lett, 1980, vol. 45, pp. 712-716.
  10. Schreiber T. Interdisciplinary application of nonlinear time series methods. Phys. Rep., 1999, vol. 308, pp. 1-64.
  11. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
  12. Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and sampling theory. Geophysics, 1982, vol.47, pp. 203-236.
  13. Nason G., von Sachs R., Kroisand G. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J.Royal Stat.Soc., 2000, vol. B62, pp. 271-292.
  14. Glushkov A.V., Khokhlov V.N., Svinarenko A.A., Bunyakova Yu.Ya., Prepelitsa G.P. Wavelet analysis and sensing the total ozone content in the earth atmosphere: Mycros technology “Geomath”. Sensor Electr. and Microsys.Techn., 2005, vol.2(3), pp. 51-60.
  15. Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns: wavelet analysis. Nonlin. Proc.in Geophys., 2004, vol. 11, no. 3, pp. 285-293.
  16. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation. Journal of Hydrology. Elsevier, 2006, vol. 322, no. 1-4, pp. 14-24.
  17. Sivakumar B. Chaos theory in geophysics: past, present and future. Chaos, Solitons & Fractals, 2004, vol. 19, pp. 441-462.
  18. Svoboda A., Pekarova P., Miklanek P. Flood hydrology of Danube between Devin and Nagymaros in Slovakia.- Nat. Rep.2000, UNESKO.-Project 4.1. Intern.Water Systems. 2000. 96 p.
  19. Pekarova P., Miklanek P., Konicek A., Pekar J. Water quality in experimental basins. -Nat. Rep.1999 of the UNESKO.-Project 1.1. Intern.Water Systems., 1999. 98 p.
  20. Balan A.K.,Systems Approach in hydrology: Extremal Hydrological Events and Effect of Changes in Hydrospheres State. Proc. Intern. Conf. “Ecology of Siberia, the Far East and the Arctic”. SD RAN, 2001, p. 133.
  21. Glushkov A.V., Balan A.K., Multifractal approach for modeling flow and short-term hydrological forecasts (for example, r. Danube). Meteorology, Climatology and Hydrology, 2004, no. 48, pp. 392-396.
  22. Balan A.K. Method multifactorial system modeling in problems of calculation extremal hydrological phenomena. Meteorology, Climatology and Hydrology, 2002, no. 45, pp. 147-152.
  23. Glushkov A.V. Khokhlov V.N., Serbov N.G., Balan A.K., Bunyakova Y.Y., Balanyuk E.P. Low-dimensional chaos in the time series of concentrations of pollutants in the atmosphere and hydrosphere. Vìsn. Odes. derž. ekol. unìv.– Bulletin of Odessa state environmental university, 2007, no. 4, pp. 337-348.
  24. Glushkov A.V., Khetselius O.Yu., Serbov N.G., Bunyakova Yu.Ya., Balan A.K., Buyadzhi V.V Modelling and forecasting the hydroecological systems pollution dynamics by using a chaos theory methods: I. Advanced data on pollution of the Small Carpathians river’s watersheds. Vìsn. Odes. derž. ekol. unìv.– Bulletin of Odessa state environmental university, 2015, no.19, pp.131-136.
Завантажити повний текст (PDF)