Authors: Glushkov A.V., Bunyakova Yu.Ya., Grushevsky O.N., Balan A.K.
Year: 2013
Issue: 13
Pages: 24-28
Abstract
On the basis of the theory of chaos, in particular, correlation dimension method and the Grossberger-Procaccia algorithm, is has been performed the analysis of time series of concentrations of nitrogen dioxide in Gdynia (Gdansk region) and calculated spectrum of the correlation dimension, that confirms the existence of a chaos existence. The resulting numerical estimates are consistent with the data from the spectrum of Lyapunov dimensionі, Kaplan-York dimension and Kolmogorov entropy. The estimation of the limit of predictability for the method of the short-termed forecast is given.
Tags: chaos; method of correlation dimension; time series of concentrations of nitrogen dioxide
Bibliography
- Бунякова Ю.Я, Глушков А.В. Анализ и прогноз влияния антропогенных факторов на воздушный бассейн промышленного города.- Одесса: Экология.-2010.-256c.
- Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud. – 2005.-Vol.62.-P. 181-191.
- Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals.-2004.-Vol.19,№ 2.-P. 441-462.
- Glushkov A.V., Bunyakova Yu.Ya., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Sensing air pollution field structure in the industrial city’s atmosphere: stochasticity and effects of chaos // Sensor Electr. and Microsyst. Tech.-2005.-№.1.-P. 80-84.
- Глушков А.В., Хохлов В.Н.,Сербов Н.Г, Бунякова Ю.Я, Балан А.К., Баланюк Е.П. Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере// Вестник Одесск.гос.экололог.ун-та.-2007.-N4.-C.337-348.
- Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P. 7284–7292.
- Глушков А.В., Серга Э. Н., Бунякова Ю.Я. Хаос во временных рядах концентраций загрязняющих веществ в атмосфере (г. Одесса)//Вісник Одеського держ. екологічного ун-ту. – 2009.-N8.-C.233-238.
- Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci.-1963.-Vol.20.-P.130-141.
- Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.- Vol.65.-P.1331-1392.
- Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series // Phys. Rev. Lett. – 1980. – Vol. 45. – P. 712-716.
- Песин Я.Б. Характеристические показатели Ляпунова и гладкая эргодическая теория // Успехи мат. наук.-1977.-Т. 32,№ 1.-С. 55-112.
- Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations // Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics No. 730 / H.-O. Peitgen, H.-O. Walter (Eds.). Berlin: Springer, 1979.-P.204-227.
- Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D.-1983.–Vol.9.–P.189-208.