Authors: Glushkov A.V.
Year: 2013
Issue: 13
Pages: 5-9
Abstract
In order to develop the theoretical foundations of the approach to analysis and prediction of anthropogenic impact on atmosphere of industrial city and development of a new scheme of modelling properties of fields of the polluting substances concentrations by means of a chaos theory, we present an analysis of physical aspects for reconstruction of the phase space (air basin) and advanced conception of Lyapunov’s dimensions.
Tags: air pollution; atmosphere of city; chaos; ecological state; Lyapunov’s indicators
Bibliography
- Бунякова Ю.Я, Глушков А.В. Анализ и прогноз влияния антропогенных факторов на воздушный бассейн промышленного города.-Одесса: Экология.-2010.-256c.
- Глушков А.В., Хохлов В.Н.,Сербов Н.Г, Бунякова Ю.Я, Балан А.К., Баланюк Е.П. Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере// Вестник Одесск.гос.экололог.ун-та.-2007.-N4.-C.337-348.
- Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Temporal variability of the atmosphere ozone content: Effect of North-Atlantic oscillation// Optics of atmosphere and ocean.-2004.-Vol.14,N7.-p.219-223.
- Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya., Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P. 7284–7292.
- Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-Southwest Ukraine region//Atmosph.Research (Elsevier).-2005.-Vol.77.-P.100-113.
- Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elseiver).-2006.-Vol. 322. N1-4.-P.14-24.
- Глушков А.В. Анализ и прогноз антропогенного влияния на воздушный бассейн промышленного города на основе методов теории хаоса: Математические основы// Вестник Одесск. гос. экололог. ун-та.-2013.-N16.-C.231-238.
- Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals. 2004. V. 19. № 2. P. 441-462.
- Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud.-2005.-Vol.62,№ 2.-P.181-191.
- Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations // Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics N730 / H.Peitgen, H. Walter (Eds.). – Berlin: Springer, 1979. – P.204-227.
- Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series// Phys. Rev. Lett. – 1980. – Vol. 45. – P. 712-716.
- Sauer T., Yorke J., Casdagli M. Embedology// J. Stat. Phys.–1991.–Vol.65.– P. 579-616.
- Mañé R. On the dimensions of the compact invariant sets of certain non-linear maps// Dynamical systems and turbulence. Lecture Notes in Mathematics N898 / D. Rand and L.S. Young (Eds.). – Berlin: Springer, 1981.– P.230-242.
- Fraser A.M., Swinney H. Independent coordinates for strange attractors from mutual information// Phys. Rev. A.–1986.–Vol.33. – P.1134-1140.
- Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep. – 1999. – Vol.308. – P. 1-64
- Арнольд В.И. Математические методы классической механики.- Москва: Наука, 1979.-380c.
- Оселедец В.И. Мультипликативная эргодическая теорема. Характеристические показатели Ляпунова динамических систем // Труды Московского математического общества.– 1968. – Т. 19. – С. 179-210.
- Kennel M., Brown R., Abarbanel H. Determining embedding dimension for phase-space reconstruction using geometrical construction// Phys.Rev.A.–1992.–Vol.45.–P.3403-3411.
- Песин Я.Б. Характеристические показатели Ляпунова и гладкая эргодическая теория // Успехи математ. наук. – 1977. – Т. 32. – С. 55-112.
- Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series // Phys. Rev. Lett. – 1985. – Vol. 55. – P. 1082-1085.