Relationship between Southern Oscillation Index and global temperature anomalies: nonlinear approach.

Authors: Khokhlov, V.N.

Year: 2008

Issue: 03

Pages: 49-55

Abstract

The non-linear relationship between Southern Oscillation Index and temperature anomalies (global as well as
both northern and southern) is studied. The methodology is based on the joint analysis of cross-redundancies
and Granger causality, which are applied to time series decomposed by the non-decimated wavelet transform. It
is shown that there are both the effects of Southern oscillation on the temperature anomalies and vice versa, as
well as the feedbacks.

Tags: climate changes; Granger causality.; Southern Oscillation

Bibliography

  1. 1. Meehl G.A., Washington W.M., Ammann C.M., Arblaster J.M., Wigley T.M.L.,
    Tebaldi C. Combinations of natural and anthropogenic forcings in twentieth-century climate //
    J. Climate 2004. – V. 17. – P. 3721–3727.
    2. Dai A., Wigley T.M.L. Global patterns of ENSO-induced precipitation // Geophys.
    Res. Lett. 2002. – V. 27. – P. 1283–1286.
    3. Khokhlov V.N., Glushkov A.V., Tsenenko I.A. Atmospheric teleconnection patterns
    and eddy kinetic energy content: wavelet analysis // Nonlin. Processes Geophys. 2004. –
    V. 11. – P. 295–301.
    4. Brönnimann S. Impact of El Niño-Southern Oscillation on European climate // Rev.
    Geophys. 2007. – V. 45. – RG3003, doi: 10.1029/2006RG000199.
    5. Ropelewski C.F., Jones P.D. An extension of the Tahiti-Darwin Southern Oscillation
    Index // Mon. Wea. Rev. 1987. – V. 115. – P. 2161–2165.
    6. Prichard D., Theiler J. Generalized redundancies for time-series analysis // Physica
    D 1995. – V. 84. – P. 476–493.
    7. Granger C.W.J. Investigating causal relations by econometric models and crossspectral
    methods // Econometrica 1969. – V. 37. – P. 424–438.
    8. Khokhlov V.N., Glushkov A.V., Loboda N.S. On the nonlinear interaction between
    global teleconnection patterns // Q. J. Royal Meteorol. Soc. 2006. – V. 132. – P. 447–465.
    9. Diks C., Mudelsee M. Redundancies in the Earth’s climatological time series // Phys.
    Lett. A 2000. – V. 275. – P. 407–414.
    10. Jevrejeva S., Moore J.C., Grinsted A. Influence of the Arctic Oscillation and El
    Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach
    // J. Geophys. Res. 2003. – V. 108. – 4677, doi:10.1029/2003JD003417.
    11. Collins M. El Niño- or La Niña-like climate change? // Clim. Dyn. 2005. – V. 24. –
    Зв’язок між Південним коливання та аномаліями температури: нелінійний метод
    __________________________________________________________________________________________
    Український гідрометеорологічний журнал, 2008, №3
    55
    P. 89–104.
    12. Crooks S.A., Gray L.J. Characterization of the 11-year solar signal using a multiple
    regression analysis of the ERA-40 dataset // J. Climate 2005. – V. 18. – P. 996–1015.
    13. Blender R., Luksch U., Fraedrich K., Raible C.C. Predictability study of the
    observed and simulated European climate using linear regression // Q. J. R. Meteorol. Soc.
    2003. – V. 129. – P. 2299–2313.
    14. Kessler W.S. Is ENSO a cycle or a series of events? // Geophys. Res. Lett. 2002. –
    V. 29. – 2125, doi:10.1029/2002GL015924.
    15. Kug J.-S., An S.-I., Jin F.-F., Kang I.-S. Preconditions for El Niño and La Niña
    onsets and their relation to the Indian Ocean // Geophys. Res. Lett. 2005. – V. 32. – L05706,
    doi:10.1029/2004GL021674.
    16. Vimont D.J. The contribution of the interannual ENSO cycle to the spatial pattern of
    decadal ENSO-like variability // J. Climate 2005. – V. 18. – P. 2080–2092.
    17. Eccles F., Tziperman E. Nonlinear effects of ENSO’s period // J. Atmos. Sci. 2004.
    – V. 61. – P. 474–482.
Download full text (PDF)