Chaos-geometric analysis of time series of concentrations of sulphur dioxide in the atmosphere of the industrial city (on example of the Gdansk region)

Authors: A.V. Glushkov, N.G. Serbov, A.A. Svinarenko, V.V.Buyadzhi

Year: 2014

Issue: 15

Pages: 238-241


On the basis of the theory of chaos ii is performed an advanced chaos-geometric analysis of time series of concentrations of sulphur dioxide in Gdynia (Gdansk region) and calculated spectrum of the correlation dimension, that confirms the chaos existence. Estimation of the predictability limit in a short-term forecast is given.

Tags: chaos-geometric method; correlation dimension; time series of concentrations


  1. Bunyakova Yu.Ya. and Glushkov A.V. Analysis and forecasting effect of anthropogenic factors on air basin of industrial city.-Odessa: Ecology, 2010.-256p.
  2. Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud.-2005.-Vol.62.-P. 181-191.
  3. Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals.-2004.-Vol.19,№ 2.-P. 441-462.
  4. Glushkov A.V., Bunyakova Yu.Ya., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Sensing air pollution field structure in the industrial city’s atmosphere: stochasticity and effects of chaos // Sensor Electr. and Microsyst. Tech.-2005.-№.1.-P. 80-84.
  5. Glushkov A.V., Khokhlov V.N., Serbov N.G Bunyakova Yu.Ya., Balan A.K., Balanjuk E.P. Low-dimensional chaos in the time series of the pollution substances concentrations in atmosphere and hydrosphere// Herald of Odessa State Environmental University.-2007.-N4.-C.337-348.
  6. Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P. 7284–7292.
  7. Glushkov A.V., Serga E.N., Bunyakova Yu.Ya. Chaos in the time series of concentrations of pollutants in the atmosphere (Odessa)// Herald of Odessa State Environmental University.-2009.-N8.-C.233-238.
  8. Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci.-1963.-Vol.20.-P.130-141.
  9. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.- Vol.65.-P.1331-1392.
  10. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series // Phys. Rev. Lett. – 1980. – Vol. 45. – P. 712-716.
  11. Pessin Ya. Characteristic Lyapunov’s exponents and smooth ergodic theory// Uspekhi of Math. Nauk.-1977.-Vol.32(1).-P.55-112.
  12. Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations // Lecture Notes in Mathematics No. 730 / H.-O. Peitgen, H.-O. Walter (Eds.). Berlin: Springer, 1979.-P.204-227.
  13. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D.-1983.–Vol.9.–P.189-208.
  14. Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series // Phys. Rev. Lett.-1985.-Vol.55.-1082-1085.
  15. Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep.- 1999.-Vol.308.-P.1-64.
  16. Tsonis A.A., Elsner J.B. Global temperature as a regulator of climate predictability // Physica D.-1997.-Vol.108.- P.191-196.
  17. Islam M.N., Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view // Adv. Water Res.-2002.-Vol.25, № 2.-P.179-190
  18. Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Temporal variability of the atmosphere ozone content: Effect of North-Atalantic oscillation// Optics of atmosphere and ocean.-2004.-Vol.14,N7.-p.219.
  19. Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-SW-Ukraine region//Atmosph. Research (Elseiver).-2005.-Vol.77.-P.100-113.
  20. Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns and eddy kinetic energy content: wavelet analysis// Nonlinear Processes in Geophysics.-2004.-V.11,N3.-P.285-293.
  21. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elsevier; The Netherlands).–2006.–Vol. 322. –N1-4.–P.14-24.
  22. Khokhlov V.N., Glushkov A.V., Loboda N.S. Relationship between SOI and global temperature anomalies: nonlinear approach// IOP Journ. of CS: Earth and Environmental Science, Spec. Issue: Climate Change – Global Risks, Challenges and Decisions. -2009.-Vol.6.-P. 072034.
Download full text (PDF)