Atmospheric pollutants concentrations temporal dynamics for the industrial Ukrainian cities

Authors: I.N. Serga, Yu.Ya. Bunyakova, O.N. Grushevsky, I.A. Shakhman

Year: 2014

Issue: 15

Pages: 234-237

Abstract

Dynamics of time variations of the air pollutants (dioxide of nitrogen, sulphur etc) concentrations in an atmosphere of the ukrainian industrial cities (Mariupol) with using advanced non-linear analysis, prediction and chaos theory methods is studied.

Tags: atmosphere; industrial city; methods of the theory of chaos; pollutants; time series of concentrations

Bibliography

  1. Bunyakova Yu.Ya. and Glushkov A.V. Analysis and forecasting effect of anthropogenic factors on air basin of industrial city.-Odessa: Ecology, 2010.-256p.
  2. Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B. Adv.in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Adv. in Computer Engineering, ed. by J.Balicki (WSEAS, Gdansk).-2014.-Vol.21.- P.143-150.
  3. Khokhlov V.N., Glushkov A.V., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P. 7284–7292.
  4. Glushkov A.V., Khokhlov V.N., Prepelitsa G.P.,Tsenenko I.A. Temporal changing of the atmosphere methane content: an influence of the NAO// Optics of atmosphere and ocean.-2004.-Vol.4,№7.-С.593-598.
  5. Glushkov A.V., Khokhlov V.N., Bunyakova Yu.Ya. Renorm-group approach to studying spectrum of the turbulence in atmosphere// Meteor.Climat.Hydrol.-2004.-N48.-P..286-292.
  6. Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns and eddy kinetic energy content: wavelet analysis// Nonlinear Processes in Geophysics.-2004.-V.11,N3.-P.285-293
  7. Glushkov A.V., Khokhlov V.N., Serbov N.G Bunyakova Yu.Ya., Balan A.K., Balanjuk E.P. Low-dimensional chaos in the time series of the pollution substances concentrations in atmosphere and hydrosphere// Herald of Odessa State Environmental University.-2007.-N4.-C.337-348.
  8. Glushkov A.V., Khokhlov V.N., Loboda N.S., Ponomarenko E.L. Computer modelling the global cycle of carbon dioxide in system of atmosphere-ocean and environmental consequences of climate change// Environmental Informatics Arch.-2003.-Vol.1.-P.125-130
  9. Glushkov A.V., Khokhlov V.N., Loboda N.S., Khetselius O.Yu., Bunyakova Yu.Ya. Non-linear prediction method in forecast of air pollutants CO2, CO. Transport and Air Pollution. – Zürich: ETH University Press (Switzerland). 2010.-P.131–136.
  10. Serga E.N., Bunyakova Yu.Ya., Loboda A.V., Mansarliysky V.F., Dudinov A.A. Multifractal analysis of time series of indices of the Arctic, the Antarctic and the Southern Oscillation. // Ulrainian Hydrometeorology Journal.-2013.-N13.-P.41-45.
  11. Rusov V.D., Glushkov A.V., Prepelitsa G.P., et al.On possible genesis of fractal dimensions in turbulent pulsations of cosmic plasma- galactic-origin rays-turbulent pulsation in planetary atmosphere system// Adv. Space Research (Elsevier).-2008.-Vol.42.-P.1614-1617.
  12. Khokhlov V.N., Glushkov A.V., Loboda N.S., Serbov N.G., Zhurbenko K., Signatures of low-dimensional chaos in hourly water level measurements at coastal site of Mariupol, Ukraine// Stoch.Environment Res. Risk Assess. (Springer).-2008.-Vol.22,N6.-P.777-788.
  13. Kennel M.B., Brown R., Abarbanel H.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45, 1992, 3403-3411.
  14. Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep.- 1999.-Vol.308.-P.1-64.
  15. Grassberger, P. and Procaccia, I. Measuring the strangeness of strange attractors// Physica D.-1983.-Vol.9.-P.189–208.
  16. Havstad, J.W. and Ehlers, C.L. Attractor dimension of nonstationary dynamical systems from small data sets//Phys. Rev. A.-1989.-Vol.39.-P.845–853.
  17. Berndtsson, R., Jinno, K., Kawamura, A., Olsson, J. and Xu S. Dynamical systems theory applied to long-term temperature and precipitation time series//Trends in Hydrol.-1994.-Vol.1.-P.291–297.
  18. Gallager R.G. : Information theory and reliable communication, N-Y., Wiley, 1986.
  19. Nason G., von Sachs R., Kroisand G. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum // J. Royal Stat. Soc. – 2000. – Vol. B-62. – P. 271-292.
  20. Lanfredi M., Macchiato M. Searching for low dimensionality in air pollution time series// Europhys.Lett.-1997.-.-Vol.57.-P.589-594.
  21. Koçak K., Şaylan L., Şen O. Nonlinear time series prediction of O3 concentration in Istanbul.// Atmospheric Environment (Elsevier).-2000.-Vol.34.-P.1267-1271.
  22. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors// Physica D. – 1983. – Vol. 9. – P. 189-208.
  23. Inhaber H. A set of suggested air quality indices for Canada// Atmos. Environ.-1975.-Vol. 9.-P.353–364.
  24. Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep. – 1999. – Vol. 308. – P. 1-64.
  25. Mandelbrot B.B. Fractal Geometry of Nature.-N.-Y., W.H. Freeman, 1982.
Download full text (PDF)