Analysis and forecast of the anthropogenic impact on industrial city’s atmosphere based on methods of chaos theory: New general scheme

Authors: A.V. Glushkov

Year: 2014

Issue: 15

Pages: 32-36

Abstract

The theoretical basis’s of a new general formalism for an analysis and forecasting an impact of anthropogenic factors on the atmosphere of an industrial city are presented. It is developed a new compact general scheme for modeling temporal fluctuations of the air pollution concentration field temporal fluctuations ,based on the methods of a chaos theory.

Tags: air basin of the industrial city; analysis and prediction methods of the theory of chaos; pollu-tants; the ecological state of the; time series of concentrations

Bibliography

  1. Bunyakova Yu.Ya., Glushkov A.V., Analysis and forecast of the impact of anthropogenic factors on air basein of an industrial city.-Odessa: Ecology, 2010.-256p.
  2. Glushkov A.V., Khokhlov V.N., Serbov N.G., Bunyakova Yu.Ya., Balan A.K., Balanyuk E.P. Low-dimensional chaos in the time series of concentrations of pollutants in an atmosphere and hydrosphere // Vestnik of Odessa State Environmental Univ.-2007.-N4.-C.337-348.
  3. Khokhlov V.N., Glushkov A.V., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P. 7284–7292.
  4. Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Temporal variability of the atmosphere ozone content: Effect of North-Atlantic oscillation// Optics of atmosphere and ocean.-2004.-Vol.14,N7.-p.219-223.
  5. Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-Southwest Ukraine region//Atmospheric Research (Elseiver).-2005.-Vol.77.-P.100-113.
  6. Glushkov A.V., Kuzakon’ V.M., Khetselius O.Yu., Bunyakova Yu.Ya., Zaichko P.A. Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proceedings of International Geometry Center.-2013.-Vol. 6,N3.-P.6-13.
  7. Glushkov A.V., Rusov V.N., Loboda N.S., Khetselius O.Yu., Khokhlov V.N., Svinarenko A.A. and Prepelitsa G.P. On possible genesis of fractal dimensions in the turbulent pulsations of cosmic plasma – galactic-origin rays – turbulent pulsation in planetary atmosphere system// Adv. in Space Research (Elsevier).-2008.-Vol.42(9).-P.1614-1617.
  8. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elseiver).-2006.-Vol. 322. N1-4.-P.14-24
  9. Glushkov A.V., Khetselius O.Yu., Brusentseva S.V., Zaichko P.A., Ternovsky V.B. Adv. in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Adv. in Computer Engineering, ed. by J.Balicki (WSEAS, Gdansk).-2014.-Vol.21.- P.69-75.
  10. Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B. Adv.in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Adv. in Computer Engineering, ed. by J.Balicki (WSEAS, Gdansk).-2014.-Vol.21.- P.143-150.
  11. Rusov V.D., Glushkov A.V., Vaschenko V.N., Myhalus O.T., Bondartchuk Yu.A. etal Galactic cosmic rays – clouds effect and bifurcation model of the earth global climate. Part 1. Theory// Journal of Atmospheric and Solar-Terrestrial Physics (Elsevier).-2010.-Vol.72.-P.498-508.
  12. Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals. 2004. V. 19. № 2. P. 441-462.
  13. Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud. 2005. V. 62. № 2. P. 181-191.
  14. Gottwald G.A., Melbourne I. A new test for chaos in deterministic systems// Proc. Roy. Soc. London. Ser. A. Mathemat. Phys. Sci. – 2004. – Vol. 460. – P. 603-611.
  15. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series// Phys. Rev. Lett. – 1980. – Vol. 45. – P. 712-716.
  16. Kennel M., Brown R., Abarbanel H. Determining embedding dimension for phase-space reconstruction using a geometrical construction// Phys. Rev. A. – 1992. – Vol. 45. – P. 3403-3411.
  17. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.-Vol.65.- P.1331-1392.
  18. Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep. – 1999. – Vol. 308. – P. 1-64.
  19. Fraser A.M., Swinney H. Independent coordinates for strange attractors from mutual information// Phys. Rev. A. – 1986. – Vol. 33. – P. 1134-1140.
  20. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors// Physica D. – 1983. – Vol. 9. – P. 189-208.
  21. Gallager R.G. Information theory and reliable communication.- NY: Wiley, 1968. – 608P.
  22. Mañé R. On the dimensions of the compact invariant sets of certain non-linear maps// Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981. – P. 230-242.
  23. Takens F. Detecting strange attractors in turbulence // Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981. – P. 366-381.
Download full text (PDF)