Authors: Shnaydman V.A., Berkovich L.V., Stepanenko S.N.
Year: 2006
Issue: 01
Pages: 33-47
Abstract
The results of current research advances are used for the atmospheric boundary layer (ABL) parameterization in the regional and mesoscale prediction models, where the level of the turbulence closure becomes important and are widely used for the quantitative description of atmospheric lower layer. The improved model reconstruction of 3D thermo-dynamic and turbulence characteristics in terrain-following coordinates for stratified, baroclinic atmospheric boundary layer is presented. The two-equation approach of turbulence closure includes the equations for kinetic energy of the turbulent eddies and dissipation rate. This approach of turbulence closure allows to exclude the empirical formulae of length scale and to take into account physics of the various complex turbulence phenomena The lower boundary condition is modified by including the prediction equations for temperature and moisture instead of given values of temperature and moisture near the surface level. The equations for TKE and dissipation rate are added by the terms of the pressure-correlation which take into account the turbulence-turbulence and mean fields-turbulence interactions. The developed model described the most physical mechanisms of the ABL formation.
Tags: atmospheric boundary layer; mesoscale prediction models; parameterization
Bibliography
- Беркович Л.В., Тарнопольский А.Г., Шнайдман В.А. Гидродинамическая модель атмосферного и океанического пограничных слоёв. // Метеорология и гидрология. 1997, № 7. – с. 40-52.
- Беркович Л.В., Тарнопольский А.Г., Шнайдман В.А. Опыт восстановления внутренней структуры атмосферного пограничного слоя по оперативной метеорологической информации. // Метеорология и гидрология. 1998, – № 7. – с. 31-42.
- Монин А.С., Яглом Ф.М. Статистическая гидромеханика. – С.-П.: Гидрометеоиздат, 1992. 693 с.
- Степаненко, С. Н. Динамика турбулентно-циркуляционных и диффузионных процессов в нижнем слое атмосферы над Украиной. – Од.: Маяк, 1998. – 284 с.
- Тарнопольский А.Г., Шнайдман В.А. Моделирование геофизического пограничного слоя. // Докл. АН Украины. 1993, – №9. – с.114-121.
- Шнайдман С.А., Фоскарино О.В. Моделирование пограничного слоя и макротурбулентного обмена в атмосфере. – Л.: Гидрометеоиздат, 1990. – 159 с.
- Abdella, K. and Mcfarlane, N. New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer. // J. Atmos. Sci. 1997, – № 54. – рр. 1850-1867.
- Abdella, K. and Mcfarlane, N. Modeling Boundary Layer Clouds with a Statistical Cloud Scheme and a Second-Order Turbulence Closure. // Boundary-Layer Meteorol. 2001, – № 98. – рр. 387-415.
- Bacon, D., et. al. A Dynamically Adapting Weather and Dispersion Model: The Operational Multiscale Environmental Model with Grid Adaptivity (OMEGA). // Mon. Wea. Rev. 2000, – № 128. – рр. 2044-2076.
- Сa, V., et . al. A K-Epsilon Turbulence Closure Model for the Atmospheric Boundary Layer Including Urban Canopy. // Boundary-Layer Meteorol. 2002,- № 102(3). – рр. 459-490.
- Canuto,V. Large Scale Simulation of Turbulence: A Subgrid Scale Model Including Shear, Vorticity, Rotation, and Buoyancy. // J. Ap. Мet. 1994,- № 428. – рр. 729-752.
- Сanuto,V., Dubovikov, M. A New Approach to Turbulence. // Intern. J. of Modern Physics. 1997, – v. A, №12. – рр.3121-3152.
- Cheng, V., et. al. An Improved Model for Turbulent PBL. // J. Atmos. Sci. 2002, – № 59. – рр. 1550-1565.
- Duynkerke, P. Application of E-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer. // J. Atmos. Sci. 1988, – № 44. – рр. 43-54.
- Detering, A. and Etling, D. Application of E-ε Turbulence Model to the Atmospheric Boundary Layer. // Boundary-Layer Meteorol. 1985, – № 33. – рр. 113-133.
- Deardorff, J. Three–Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer. // Boundary- Layer Meteorol. 1974, – № 7. – рр. 81-106.
- Deardorff, J. Stratocumulus- Capped Mixed Layers Derived from Three-Dimensional Model. // Boundary-Layer Meteorol. 1980, – № 18. – рр. 495-527.
- Freedman, F. and Jacobson, M. Transport-Dissipation Analytical Solutions to the K-Epsilon Turbulence Model and their Role in Predictions of the Neutral ABL. // Boundary-Layer Meteorol., 2002, – № 102(1). – рр.117-138.
- Freedman, F. and Jacobson, M. Modification of the Standard Epsilon-Equation for the Stable ABL through Enforced Consistency with Monin-Obukhov Similarity Theory. // Boundary-Layer Meteorol. 2003, – № 106(3). – рр.383-410.
- Gerrity, J., et. al. The Numerical Solution of the Mellor-Yamada Level 2.5 turbulent Kinetic Energy Equation in the Eta Model. // Mon. Wea. Rev. 1994, – № 122. – рр. 1640-1646.
- Grell, G., Dudhia, J., Stauffer, D. Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). // NCAR/TN-398+IA, National Center for Atmospheric Research. – 1994, Boulder, CO, p.107.
- Helfand, H. and Labraga, J. Design of a Nonsingular Level 2.5 Second-Order Closure Model for Prediction of Atmospheric Turbulence. // J. Atmos. Sci. 1988, – № 45. – рр. 113-132.
- Hill, G. Factors Controlling the Size and Spacing of Cumulus Clouds as Revealed by Numerical Experiments. // J. Atmos. Sci. 1974, – № 31. – рр.646-657.
- Hong, S. Pan, H. Non-local Boundary Vertical Diffusion in the Medium-Range forecast Model. // Mon. Wea. Rev. 1996, – № 124. – рр. 2223-2339.
- Huber, A. et. al. Development and Applications of CFD Simulations in Support of Air Quality Studies Involving Buildings. // 13th Joint Conference on the Applications of Air Pollution Meteorology US EPA. 2004.
- Janjic, Z. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. // NCEP Office Note, 2002, – No 461, 61 pp.
- Jiang, W., et. al. Study on Development and Application of a Regional PBL Numerical Model. // Boundary-Layer Meteorol. 2002, – №104(3). – рр. 491-503.
- Lesieur M., et. al. Large-Eddy Simulations оf Turbulence. – New York, Cambridge U. Press, 2005. – p. 219.
- Lilly, D. Representation of Small-Scale Turbulence in Numerical Simulation Experiment. // Proceedings of IBM Scientific Computing Symposium on Environmental Sciences, NY. 1967.
- Marht, L. Stratified Atmospheric Boundary Layers. // Boundary-Layer Meteorol. 1999, – № 90, -рр. 375-396.
- Marht, L. Surface heterogeneity and vertical structure of the boundary layer. // Boundary-Layer Meteorol. 2000,-№ 96(2)–рр.6-33.
- Mellor, G. and Yamada T. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. // J. Atmos. Sci., 1974, – №31. – рр.1791-1806.
- Mellor, G. and Yamada T. Development of Turbulent Closure Model for Geophysical Fluid Problems. //Rev. Geophys. Space Phys. 1982, – № 20. – рр.851-875.
- Michalakes, J., et. al. The Weather Research and Forecast Model. // Eleventh ECMWF Workshop, Reading, U.K. 2004.
- Moeng, C. and Wyngaard J. Evaluation of Turbulent and Dissipation Closures in Second-Order Modelling. // J. Atmos. Sci. 1989, – № 46. – рр. 2311-2330.
- Nakanish, M. Improvement of the Mellor-Yamada Turbulence Closure Model Based on Large-Eddy Simulation Data. // Boundary-Layer Meteorol., 2001, – № 99(3). – рр.349-378.
- Pielke, R., et. al. A Comprehensive Meteorological Modeling System-RAMS. // Meteor. Atmos. Phys. 1992, – № 49. – рр.69-91.
- Scamarock, W. A Description of the Advanced Research WRF Version 2. // NCAR Technical Note, NCAR/TN-468+STR. 2005.
- Smagorinsky, J. General Circulation Experiment with the Primitive Equations, Mon. Wea. Rev. 1963, – №91. – рр.99- 165.
- Young Shi, et. al. Three-Dimensional Non-Hydrostatic Numerical Simulation for PBL. // Boundary-Layer Meteorol. 2000, – №106(3). – рр. 383-410.
- Zilitinkevich,S. and Baklanov, A. Calculation of the Height of the Stable Boundary Layer in Practical Applications. // Boundary- Layer Meteorol. 2002, – № 105(3). – рр. 389-409.