The estimation of systematic error in the MM5 model with different parameterization schemes.

Authors: Ivanov S.V., Palamarchuk J.O.

Year: 2007

Issue: 02

Pages: 43-66

Abstract

The evaluation of systematic error in the limited area model MM5v3.7 with different parameterization schemes for the atmospheric boundary layer, cumulus, radiation and microphysics is carried out in this work. Estimate is based on the comparison of model forecast variables versus reanalysis ERA40. Systematic error for major atmospheric prognostic variables is described in terms of diagnostics such as the lead-time evolution, spatial distribution, vertical profiles and spectra. Optimal sets of parameterizations schemes for different variables are proposed to use in numerical simulations.

Tags: models systematic error; parameterizations schemes

Bibliography

  1. 1. Talagrand O. Assimilation of observations, an introduction // J.Meteorol.Soc.Jpn. 1997. –
    v.75. – p.191-209.
    2. Simmons A., Hollingsworth A. Some aspects of the improvement of skill of numerical
    weather prediction // Q.J.R.Meteorol.Soc. 2002. – v.128. – p.647-677.
    3. Tibaldi S., Palmer T.N., Brancovic C., Cubasch U. Extended-range predictions with
    ECMWF models: Influence of horizontal resolution on systematic error and forecast skill //
    Q.J.R.Meteorol.Soc. 1990. – v.116. – p.835-866.
    4. Brankovic C., Molteni F. Sensitivity of the ECMWF model northern winter climate to
    model formulation // Clim.Dyn. 1997. – v.13. – p.75-101.
    5. Courtier P., Thépaut J.-N., Hollingsworth A. A strategy for operational implementation of
    4DVAR, using an incremental approach // Q.J.R.Meteorol.Soc. 1994. – v.120. – p.1367–
    1387.
    6. Toth Z., Kalnay E. Ensemble forecasting at NCEP and the breeding method //
    Mon.Wea.Rev. 1997. – v.125. – p.3297–3319.
    7. Klinker E. Investigation of systematic error by relaxation experiments //
    Q.J.R.Meteorol.Soc. 1990. – v.116. – p.573-594.
    8. Brankovic C., Molteni F. Seasonal climate and variability in the ECMWF ERA-40 model
    // Clim.Dyn. 2004. – v.22. – p.139-155.
    9. Дымников В.П., Филатов А.Н. Устойчивость крупномасштабных атмосферных
    процессов. – Л.: Гидрометеоиздат, 1990. – 240 с.
    10. Uppala S.M., Kållberg P.W., Simmons A.J., Andrae U., da Costa Bechtold V., Fiorino M.,
    Gibson J.K., Haseler J., Hernandez A., Kelly G.A., Li X., Onogi K., Saarinen S., Sokka N.,
    Allan R.P., Andersson E., Arpe K., Balmaseda M.A., Beljaars A.C.M., van de Berg L.,
    Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M.,
    Fuentes M., Hagemann S., Hólm E., Hoskins B.J., Isaksen L., Janssen P.A.E.M., Jenne R.,
    McNally A.P., Mahfouf J.-F., Morcrette J.-J., Rayner N.A., Saunders R.W., Simon P., Sterl A.,
    Trenberth K.E., Untch A., Vasiljevic D., Viterbo P., Woollen J. The ERA-40 re-analysis //
    Q.J.R.Meteorol.Soc. 2005. – v.131. – p.2961-3012.
    11. Dudhia J. A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation
    tests and simulation of an Atlantic cyclone and cold front // Mon.Wea.Rev. 1993. – v.121. –
    p.1493-1513.
    12. Desroziers G., Ivanov S. Diagnosis and adaptive tuning of observation error parameters in
    a variational assimilation // Q.J.R.Meteorolo.Soc. 2001. – v.127. – p.1433-1452.
    Иванов С.В., Паламарчук Ю.О.
    __________________________________________________________________________________________
    66
    13. Rabier F., Klinker P., Courtier P., Hollingsworth A. The ECMWF implementation of
    three-dimensional variational assimilation (3D-var). Part II: Structure functions //
    Q.J.R.Meteorolo.Soc. 1998. – v.124. – p.1809-1829.
    14. Janjic Z.I. The step-mountain coordinate: Physical package // Mon.Wea.Rev. 1990. –
    v.118. – p.1429-1443.
    15. Janjic Z.I. The step-mountain Eta coordinate model: Further development of the
    convection, viscous sublayer, and turbulent closure schemes // Mon.Wea.Rev. 1994. – v.122.
    – p.927-945.
    16. Hong S.-Y., Pan H.-L. Nonlocal boundary layer vertical diffusion in a medium-range
    forecast model // Mon.Wea.Rev. 1996. – v.124. – p.2322-2339.
    17. Grell G. A., Dudhia J., Stauffer D.R. A description of the fifth-generation Penn
    State/NCAR mesoscale model (MM5) // NCAR Technical Note, 1994. – NCAR/TN-
    398+STR. – 117 pp.
    18. Kain J. S., Fritsch J.M. The representation of cumulus convection in numerical models.
    Amer. Meteor. Soc., 1993. – 246 pp.
    19. Mlawer E. J., Taubman S. J., Brown P. D., Iacono M. J., Clough S. A. Radiative transfer
    for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave //
    J.Geophys. Res. 1997. – v.102. – p.16663-16682.
    20. Hack J. J., Boville B. A., Briegleb B. P., Kiehl J. T., Rasch P. J., Williamson D. L.
    Description of the NCAR Community Climate Model (CCM2) // NCAR Technical Note.
    1993. – NCAR/TN-382+STR. – 120 pp.
    21. Auger L. Analysis of surface observations // 15-th Aladin workshop. Bratislava. 6-10 June
    2005.
    22. Иванов С.В. Особенности восстановления полей вариационными методами над
    районами с различным разрешением сети наблюдений // Метеорология, климатология и
    гидрология. 2000. – №40. – с.20-26.
Download full text (PDF)