Авторы: Зилитинкевич С.С., Эльперин Т., Клиорин Н., Рогачевский И.
Год: 2009
Номер: 04
Страницы: 75-102
Аннотация
Предлагается модель замыкания уравнений Рейнольдса, основанная на уравнениях баланса для фундаментальных вторых моментов: ТКЭ (турбулентной кинетической энергии) и ТПЭ (турбулентной потенциальной энергии), вместе составляющих полную или суммарную энергию турбулентности: СЭТ=ТКЭ+ТПЭ, а также вертикальных турбулентных потоков импульса и плавучести (пропорциональной потенциальной температуре). Кроме понятия СЭТ, наш подход содержит ещё два новых ключевых элемента: неградиентную поправку к потоку плавучести и зависимость анизотропии поля скоростей от стратификации течения. В предложенной модели гарантирована возможность существования турбулентности при любом градиентном числе Ричардсона, Ri. Вместо критического значения числа Ричардсона, которое разделяет – как обычно предполагается – турбулентный и ламинарный режимы, в предлагаемой модели появляется переходный интервал, 0.1<Ri <1 , разделяющий два режима существенно различной природы: сильная турбулентность обычного типа при Ri«1; и слабая турбулентность, способная переносить импульс, но намного менее эффективная в переносе тепла, при Ri>1. Расчеты по нашей модели согласуются с данными атмосферных и лабораторных экспериментов, полного вихреразрешающего численного моделирования турбулентности (direct numerical simulation = DNS) и частично вихреразрешающего моделирования турбулентности (large-eddy simulation = LES).
Теги: анизотропия; замыкание уравнений турбулентного движения; кинетическая энергия турбулентности; критическое число Ричардсона; полная энергия турбулентности; потенциальная энергия турбулентности; путь смешения; турбулентная вязкость; турбулентный перенос; устойчивая стратификация
Список литературы
- Курбацкий А.Ф. Лекции по турбулентности. – Новосибирск, Изд-во Новосибирского государственного университета, 2000.
- Agrawal, A., Djenidi and R.A. Antobia (2004) URL http://in3.dem.ist.utl.pt/lxlaser2004/pdf/ paper_28_1.pdf
- Banta R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter and L. Mahrt (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol., 105, pp. 221–252.
- Beare, R.J., M.K. MacVean, A.A.M. Holtslag, J. Cuxart, I. Esau, J.C. Golaz, M.A. Jimenez, M. Khairoudinov, B. Kosovic, D. Lewellen, T.S. Lund, J.K. Lundquist, A. McCabe, A.F. Moene, Y. Noh, S. Raasch and P. Sullivan (2006) An intercomparison of large eddy simulations of the stable boundary layer. Boundary-Layer Meteorol., 118, pp. 247– 272.
- Bertin, F., J. Barat and R. Wilson (1997) Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Science, 32, pp. 791–804.
- Canuto, V.M., F. Minotti (1993) Stratified turbulence in the atmosphere and oceans: a new sub-grid model. J. Atmos. Sci. 50, pp. 1925–1935.
- Canuto, V.M., A. Howard, Y. Cheng, M.S. Dubovikov (2001) Ocean turbulence. Part I: One-point closure model — momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, pp. 1413–1426.
- Cheng, Y., V.M. Canuto, A.M. Howard (2002) An improved model for the turbulent PBL. J. Atmosph. Sci., 59, pp. 1550–1565.
- Churchill, S.W. (2002) A reinterpretation of the turbulent Prandtl number. Ind. Eng. Chem. Res., 41, pp. 6393 –6401.
- Cuxart, J. and 23 co-authors (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol., 118, pp. 273–303.
- Dalaudier, F. and C. Sidi (1987) Evidence and interpretation of a spectral gap in the turbulent atmospheric temperature spectra. J. Atmos. Sci. 44, pp. 3121–3126.
- Elperin, T., N. Kleeorin and I. Rogachevskii (1996) Isotropic and anisotropic spectra of passive scalar fluctuations in turbulent fluid flow. Phys. Rev. E, 53, pp. 3431–3441.
- Elperin, T., N. Kleeorin, I. Rogachevskii and S.S. Zilitinkevich (2002) Formation of large-scale semi-organized structures in turbulent convection. Phys. Rev. E, 66, 066305 (1–15).
- Elperin, T., N. Kleeorin, I. Rogachevskii and S.S. Zilitinkevich (2006) Turbulence and coherent structures in geophysical convection. Boundary-Layer Meteorol. 119, pp. 449–472.
- Esau, I. (2004) Simulation of Ekman boundary layers by large eddy model with dynamic mixed sub-filter closure, Environmental Fluid Mech., 4, pp. 273–303.
- Esau, I.N. and Zilitinkevich S.S. (2006) Universal dependences between turbulent and mean flow parameters in stably and neutrally stratified planetary boundary layers. Nonlin. Processes Geophys., 13, pp. 135–144.
- Foken, T. (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorology, 119, pp. 431–447.
- Hanazaki, H. and J.C.R. Hunt (1996) Linear processes in unsteady stably stratified turbulence. J. Fluid Mech., 318, pp. 303–337.
- Hanazaki, H. and J.C.R. Hunt (2004) Structure of unsteady stably stratified turbulence with mean shear. J. Fluid Mech., 507, pp. 1–42.
- Hunt, J.C.R., J.C. Kaimal and J.E. Gaynor (1985) Some observations of turbulence in stable layers. Quart, J. Roy. Meteorol. Soc., 111, pp. 793–815.
- Hunt, J.C.R., D.D. Stretch and R.E. Britter (1988) Length scales in stably stratified turbulent flows and their use in turbulence models. In: Proc. I.M.A. Conference on “Stably Stratified Flow and Dense Gas Dispersion” (J. S. Puttock, Ed.), Clarendon Press, pp. 285–322.
- Holton, J.R. (2004) An Introduction to Dynamic Meteorology. Academic Press, New York, 535 pp.
- Jin, L.H., R.M.C. So and T.B. Gatski (2003) Equilibrium states of turbulent homogeneous buoyant flows. J. Fluid Mech., 482, pp. 207–233.
- Kays, W.M. (1994) Turbulent Prandtl number – where are we? J. Heat Transfer, 116, pp. 284–295.
- Keller, K. and C.W. Van Atta (2000) An experimental investigation of the vertical temperature structure of homogeneous stratified shear turbulence. J. Fluid Mech., 425, pp. 1–29.
- Kraus, E.B. and J.A. Businger (1994) Atmosphere-Ocean Interaction. Oxford University Press, Oxford, 362 pp.
- Kolmogorov, A.N. (1941) Energy dissipation in locally isotropic turbulence. Doklady AN SSSR, 32, No.1, pp. 19–21.
- Kondo, J., O. Kanechika and N. Yasuda (1978) Heat and momentum transfer under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, pp. 1012–1021.
- Luyten, P.J., S. Carniel and G. Umgiesser (2002) Validation of turbulence closure parameterisations for stably stratified flows using the PROVESS turbulence measurements in the North Sea. J. Sea Research, 47, pp. 239–267.
- L’vov, V.S., A. Pomyalov, I. Procaccia and S.S. Zilitinkevich (2006) Phenomenology of wall bounded Newtonian turbulence. Phys. Rev., E 73, 016303, pp. 1–13.
- Mahrt, L. and D. Vickers (2005) Boundary layer adjustment over small-scale changes of surface heat flux. Boundary-Layer Meteorol., 116, pp. 313–330.
- Mauritsen, T., and G. Svensson (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645–655.
- Mauritsen, T., G. Svensson, S.S. Zilitinkevich, E. Esau, L. Enger and B. Grisogono. (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci., 64, pp. 4117–4130.
- Mellor, G.L. and T. Yamada (1974) A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, pp. 1791–1806.
- Moser, R.G., J. Kim and N.N. Mansour (1999) Direct numerical simulation of turbulent channel flow up to Re = 590. Phys. Fluids, 11, pp. 943–945.
- Monin, A.S. and A.M. Obukhov (1954) Main characteristics of the turbulent mixing in the atmospheric surface layer. Trudy Geophys. Inst. AN. SSSR, 24(151), pp. 153–187.
- Monin, A.S. and A.M. Yaglom (1971) Statistical Fluid Mechanics. Vol. 1. MIT Press, Cambridge, Massachusetts, 769 pp.
- Ohya, Y. (2001) Wind-tunnel study of atmospheric stable boundary layers over a rough surface, Boundary-Layer Meteorol., 98, pp. 57–82.
- Ozmidov, R.V. (1990) Diffusion of Contaminants in the Ocean. Kluwer Academic Publishers, Dordrecht, The Netherlands, 283 pp.
- Poulos, G.S., W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley and M. Jensen (2002) CASES–99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer, Bull. Amer. Meteorol. Soc., 83, pp. 555–581.
- Rehmann, C.R. and J.H. Hwang (2005) Small-scale structure of strongly stratified turbulence, J. Phys. Oceanogr., 32, pp. 154–164.
- Rehmann, C.R., J.R. Koseff (2004) Mean potential energy change in stratified grid turbulence Dynamics of Atmospheres and Oceans, 37, pp. 271–294.
- Richardson, L.F. (1920) The supply of energy from and to atmospheric eddies. Proc. Roy. London, A 97, pp. 354–373.
- Rotta, J.C. (1951) Statistische theorie nichthomogener turbulenz. Z. Physik, 129, pp. 547–572.
- Schumann, U. and T. Gerz (1995) Turbulent mixing in stably stratified sheared flows. J. App. Meteorol., 34, pp. 33–48.
- Strang, E.J. and H.J.S. Fernando (2001) Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, pp. 2026–2048.
- Stretch, D.D., J.W. Rottman, K.K. Nomura, and S.K. Venayagamoorthy (2001) Transient mixing events in stably stratified turbulence. In: 14 th Australasian Fluid Mechanics Conference, Adelaide, Australia, 10–14 December 2001.
- Umlauf, L. (2005) Modelling the effects of horizontal and vertical shear in stratified turbulent flows, Deep-Sea Research, 52, pp. 1181–1201.
- Umlauf, L. and H. Burchard (2005) Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Continental Shelf Research, 25, pp. 725–827.
- Uttal, T., J.A. Curry, M.G. McPhee, D.K. Perovich and 24 other co-authors (2002) Surface Heat Budget of the Arctic Ocean, Bull. Amer. Meteorol. Soc., 83, pp. 255–276.
- Weng, W. and P. Taylor (2003) On modelling the one-dimensional Atmospheric Boundary Layer, Boundary-Layer Meteorol., 107, pp. 371–400.
- Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii (2007) Energy- and flux budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Boundary-Layer Meteorol., 125, pp. 167–192.
- Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, M. Miles (2008) Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Quart. J. Roy. Meteorol. Soc., 134, pp. 793–799.
- Zilitinkevich, S.S. and I.N. Esau (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layers. Boundary-Layer Meteorol., 125, pp. 193–296.
- Zilitinkevich, S.S., V.M. Gryanik, V.N. Lykossov and D.V. Mironov (1999) Third-order transport and non-local turbulence closures for convective boundary layers. J. Atmosph. Sci., 56, pp. 3463–3477.
- Zilitinkevich, S.S., V.L. Perov and J.C. King (2002) Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation Quart. J. Roy. Meteorol. Soc.,128, pp. 1571–1587.