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COMPUTATIONAL ALGORITHM OF SOLUTION OF THE THREE-
DIMENSIONAL NON-STATIONARY TURBULENT DIFFUSION EQUATION ON
THE BASE OF THE ALTERNATING DIRECTION METHOD

Abstract. Solution of the 3D turbulent diffusion equation, based on the alternating direction method, is
proposed. The advantage of this scheme is its physical validity and high stability. The numerical algorithm,
developed, allows including the computing unit of air pollution dispersion in the 3D unsteady boundary layer of
the atmosphere.
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1 Problem statement

At some height a continuous point source creates “looping” pollutant plume. The plume
moves in the downwind direction and in the calculation domain it creates the 2D air pollutants
concentration fields (x, y and y, z), which are used as lateral boundary conditions for the
turbulent diffusion equation during all calculation time. Under the action of wind and
atmospheric turbulence the contaminants on lateral surfaces are transferred into the
calculation domain and dispersed within it.

The problem is to calculate the spatial-temporal distribution of pollutant concentrations
for a period of time 7 (till 6 hours), for which the meteorological conditions are possible to
consider as constant.

2 Solution method

At some distance from a continuous point source the plume is conditionally broken on
two subregions. In the near subregion the air pollutant distribution may be estimated by the
Gaussian model, in distant subregion — the pollutant distribution is described by the turbulent
diffusion equation (TDE).

The sizes of the near zone do not exceed a distance, at which the IAEA model is
applicable. For the distant zone the TDE is solved.

According to the Gaussian plume model for a continuous point source, located at the

height H above an underlying surface, the volumetric pollutant concentration q(n, ¢ ,z) is

obtained from a formula:

2 2 2
o — M| €=’ [p(#]p[ﬂn 0

270 ,0,U 20-}2, 207} 20'22

where: 77 is the along—wind coordinate measured in wind direction, £ is the cross—wind
coordinate direction, z is the vertical coordinate measured from the ground, 7y, £ are the
horizontal coordinates of a pollutant source, H is the source height, M is the mass
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emission rate, U is the velocity of pollutant transport in the direction of x—axe (m/s), o, ©

are the lateral and vertical dispersion parameters, respectively.
These diffusion parameters are power functions of the distance 7 from a source.

c;=P;n", j=¢,z. 2)

The factors P; and q; are defined as functions of the stability category and effective

stack height.

In the near zone and, hence, in the distant three-dimensional area the pollutant
concentrations is determined using the standard meteorological information and source
parameters.

To calculate the pollutant concentrations in the distant zone the turbulent diffusion
equation for pollutant is used:

oq oq Oq og 0 8q 0 8q 0

tu—+v—+w—+—K, —+—K 0, 3
ot “ax Ve Vor ox Tox oy Yoy oz az ~ha= 3
where: x, y — arbitrary horizontal coordinates in the distant zone;
u,v,w — transport velocity in the direction of x—, y—, z —axes, respectively;

K> Ky» K, — eddy diffusivities in the direction of x—, y —, z —axes, respectively;
p — coefficient of pollutant transformation in chemical reactions.
To choose K, K, K it is necessary to take into account scales of pollutant clouds,

as their values is significantly depend on sizes of vortexes, participating in the pollutant
dispersion. However we shall examine only such cases, under which the sizes of a pollutant
cloud observed at a sufficiently long distance from the source, is great, and the eddy
diffusivities for pollutant coincide with the eddy diffusivities for meteorological magnitudes:

Kx:Ky:kL’ (43)
K, =k, (4b)

where k; , k are lateral and vertical eddy diffusivities for momentum, respectively.

Taking into account (4) the equation (3) can be written as:

tu—+v—+w
ot ox Oy 0z Ox ~Ox Oy 0y 0z oz

oq 0q Oq 8_q+6k8q ikLéq 0 8q_ﬂq 0. (5)

To solve the equation (5) it is necessary to specify initial and boundary conditions. The
initial conditions at ¢ =¢, is defined, assumed that at the upwind side of the calculation

domain (the far zone) the pollutant concentrations, produced with the IAEA model for the
near zone, are saved during all calculation time. In other points of the distant zone at the
initial time the air is considered to be completely "pure" from pollutant. Thus, the pollutant
concentrations instead of source parameters are used in the calculation domain, and it is rather
significant for constructing of numerical solution algorithm.
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The boundary conditions are determined from the following physical reasons. In
increasing distance from the underlying surface, i.e. in approaching to the upper bound of the
atmosphere boundary layer (ABL), the atmospheric turbulence gradually reduces, therefore it
is naturally assumed that the vertical eddy pollutant flux becomes equal to zero at the upper
bound of the ABL:

oq
— 0. 6
. (6)

We shall specify the lower boundary condition as the following:

ka—q+qu=qu—%10 at  z=zp, (7)
Oz

where: Wy~ gravitational settling velocity for particles (under influence of the gravity force
particles deposit on the underlying surface) in ms™;
V,; —dry deposition velocity of particles (ms™);
y  —coefficient of particle rising, affected with the wind (m™);
qo —Initial areal pollutant concentration (gm™).

As the first approximation the effect of particle rising, affected with the wind, will be
excluded. Then, rewrite the condition (7) in the following form:

ka—q+qu= Vyq, at z=z (8)
Oz

By performing the sum of the turbulent kg—q and gravitational Weq parts as the eddy
Z

fluxes of pollutant near the surface (S), (8) can be written as:
S=qu(x,y,z,t), at  z=z 9)

At leeward lateral boundaries "radiation conditions", that is the open boundary
conditions, are specified:

a—q+C oq _

< =0, 10
or Pl on (10)

where C,, —phase velocity of the sum wave in a solution at the boundary at the given time.

Thus, we described the problem of spatial-temporal distribution of pollutant
concentrations in three-dimensional domain, assumed that leeward side concentrations, wind
speed components, lateral and vertical eddy diffusivities, dry deposition velocity of particles
and coefficient of pollutant transformation in chemical reactions, are specified,.

The computational algorithm is constructed on the base of the alternating directions
method. This method is to calculate the function g at time 7=, + 0t with three successive

fractional steps, provided that the field of ¢ is known at the instant # =¢, . At each fractional

step, by—turn, calculation is carried out for half-time step and the whole time step by the
modified Lax—Wendroff (LW) scheme. The primary equation is approximated at each
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half-time step: implicitly x —direction, and explicitly y -, z —directions for the first fractional
step; implicitly y —direction, and explicitly x -, z -directions for the second fractional step;
implicitly z—direction, and explicitly x-, y -directions for the third fractional step. The
primary equation is approximated at each whole time step implicitly, and therefore it turns in

a three—point one—dimensional equation, which is easily realized by the one—dimensional

1/3

factorization method. The result is presented as ¢/~ in the x-—axe direction at the first

23 in the y —axe direction at the second one and as q1 in the z —axe

factorization stage, as g
direction at the third one.

To realize numerical solution of the three-dimensional equation, it is necessary to
construct a 3D mesh. It is necessary to note, that at the half—time step the additional nodes are
located in the middle of grid element. It is a possibility to reduce calculation to

one-dimensional factorization. So, the calculation mesh may be chosen as:
Pz{(x,y,z);x:i-5x, y=j-oy;z=k-0z, i=,1;j=1J;k =1,K}

where: dx, 0y, 0z —mesh spacing in the directions of x—, y—, z—axis , respectively;
i, j, k —grid node numbers in the direction of x—, y—, z—axes, respectively.

The mesh spacing in the x, y directions are constant; outward from the underlying
surface in the z direction the spacing 5z depends on the value H/k, where H — height of
the boundary layer, £ — number of nodes in the direction of z —axe.

Below numerical scheme of the turbulent diffusion equation solution, including
quantitative evaluation of initial data, is presented. It consists of preparatory stage and
realization stage. At the preparatory stage the input of source parameters, calculation of wind
speed components and turbulent characteristics in the ABL model, determination of pollutant

concentrations is fulfilled for the calculation domain. At the realization stage a solution of
TDE is carried out with the following scheme:

Realization of the first fractional step:

. . . . ot
- Calculation of intermediate values at the instant ¢ =y +—;

1/3

- Determination of q '~ at time ¢ =#y + Ot ;

Realization of the second fractional step:

: : . . ot
- Calculation of intermediate values at the instant ¢ =y +—

- Determination of qz/ 3

attime t =ty +t;
Realization of the third fractional step:
. . . . ot
- Calculation of intermediate values at the instant ¢ =, +? ;

- Determination of q' at time 7 = fo+ot.

At a preparatory stage the input data (wind speed components, u, v, w; lateral and
vertical eddy diffusivities, k; and k) are specified with the ABL model.

To approximate the equations at each fractional step two finite difference operators are
used:
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Centered difference operator:

o

xaq =

E[q(xa+5xa)—q(xa—5xa):|, (17)

Smoothing operator:

;x = %[q(xa +0x4) +q(xg —5xa)] (18)

We will write the whole time step equation for the first fractional step:
1/3 0 ' 0 n 0
q9 -9 +71§XQI+rZ§y‘J?+r352‘Jup_ﬁq =

_ 5;[5x(1<}g/25xq”3)+5y (K528,4%)+ 5,(K"25,4" . (19)

~ 1
where f=f-0t; r = 5t-ulé i=12,3.

To transform (19) in the equation for ql/ 3, three fields of ¢q;, g £ Qup should be
defined:

—X)yzz 1 —Xyzz —XyyzZ
0 0 0 0
9= q ) noyq +nd, q +nro, q |, (20)
—Xxyzz —Xxyzz —XxXyz
0 0 0 0
i@v=9 -3 noy ¢ +nd,q +nrd, q |, 2D
—XXyyz —Xyyz —Xxyz
0 0 0 0
Gup = 4 —3 Noy q +nd, q +nro.q | (22)

In relation (20) ¢ differs from ¢; in that implicit approximation is used for the

term u% Similarly, in (21) q,', differs from ¢, — implicit approximation for the term vg—z ,
in (22) ql;p from ¢, —implicit approximation for the term wz—z .
Thus
q1—4q1 = —%(5)&1”3 - 5xq0), (23)
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n

' 2/3 0
q9r—qr = —3(5yq —0,q ) (24)

(]&p “qup = — > (52‘]3/3 52(]0) . (25)

Taking into account (20)—(25) the equation (19) becomes:

1/3 0 14 1/3 0 ~
g9 —9 +r15x(ql_51 (5xq —5xq ))+r25yql’+r35zqup -pq = 6
1/2 ¢ 1 1/2 1/2
= 515, (K§ *6.4" )+ 6,(K¥25,4°) + 5, (K" 25,4")
We shall note the whole time step equation for the second fractional step:
2/3
9 -9 +r15qu+r25yqr+r3 zqup :Bq
(27)

= o] 8,(KY 25,048, (KY25,4*) + 6, (K" 26,4") |

Subtracting (27) from (19) and taking into account (21) and (24) we get the equation

for qz/ 3

I TE N} 5y(’,25yq2/3)_ 5:-5y(K§/2q2/3) _
2 (28)
n 0 1/2 0
~2.6,038,4")- 016, (kY 25,4")

For the third fractional step the whole time step equation may be written in the
following form:
3/3
q —-q +7‘1§xQI+r2§yQF+r3 unp /Bq

(29)
_ &[5 (KY2s5, q“3)+5y(1<§/25yq2/3)+ 5Z(K1/25Zq3/3)J

Subtract (29) from (27) taking into account (22) and (25), the equation for q1 is
derived:

v Vv
q' =3 073624") =067 (K2 824") = 71 == 87(3624") - 6167 (K' 2 524°). 30)

Substitution of the finite difference operators (17), (18) in the equations (26), (28) and
(30) yields:

/3 /3 /3 1/3
lql+1]k+bql]k+clql 1jk_(F )ljk’ (313)
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2/3 2/3 23 _ (23
@i jirk + 09tk = (F q )i’ I (31b)
1 1 1 1
i j k1 YOk j g Tk di -1 = (Fq )i i (3lc¢)

where all factors a;,a;,a; and the right terms (Fq ) _ in these equations are expressed in
l’]’

terms of the variables u,v,w,k;,k and g obtained at the previous instant. These equations
are solved with the one—dimensional factorization method in the direction of x—, y—, z -axes.
The field of g at time t =, +Jt 1s derived at the last factorization stage. Then the obtained
field g is used as the initial condition for calculation of the concentration field at the
following instant ¢ = #y + 26t . Repeating such solution procedure, the pollutant concentration

field may be derived at any time ¢.

At the preparatory stage the three-dimensional non-stationary ABL model, which is
based the closed set of equations of the hydrothermodynamics, is used.

This model includes the evolutionary (momentum, heat, moisture transport) and
diagnostic (statics, state and continuity) equations. The closure is realized with the turbulence
kinetic energy (b) budget equation, dissipation (&) equation and Kolmogorov relation,
connecting the vertical eddy diffusivity & with b and &. The description of horizontal
turbulent mixing is based on undergrid lateral eddy diffusivity K; , which is estimated with

the Smagorinsky formula. We shall write the equations of the hydrothermodynamics in the
Cartesian Coordinates.

The equations:

The momentum equations

u 1 D,(p) o ou D, D,
M oAy =—— 2P O ML EC (kD) + =k, D 32
o TAW =T T Ty, o e T)+Dy(L n): (32)
v 1 D.(p) & v D D
LAy =—e 2 OV B (kD ) + 2k, D 33
o ® o Dy fu+az 8Z+Dx(L n)+Dy(L r); (33)

The thermodynamic energy equation

D, (6 D, (6
%+A(6)=argk%+&(h&]+&(lq A )J+5R+Lc, (34)

ot 0z 0z Dx Dx Dy Dy

The moisture budget equation

D D
a_m+A(m) = amika_m + & kL ((m) + D( kL ((I’}’l) , (35)
ot 0z 0z Dx Dy
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The turbulent kinetic energy budget equation

b
+A(b
5 HAO)=

2
ou 2 (ov s 00 o ob
k +| — | |+k (D5 +D7)— k—+op, —k— +
[(sz (sz] 1(Ds+Dr) “Te o

0z 0Oz
+ &(kLDF—(b)] + &(kLDF—(b)] _agﬁ
Dx Dx Dy Dy k

The dissipation equation

o€
—+A(e) =«
Py (&)=

2
ou ov 2 ) g, 00 0 , 0¢
k A2 sk DE+ D2 —a, L8k oy L5 %5
b{ [(c?zj (az” 1(D§ T)} o e e

+

Dr(p Prle)), Dr(, Pr(e)) &
Dx 'L Dx DyLDy 3h

The continuity equation:

ou oOv ow
+—+—=
ox Oy 0z

The hydrostatic equation

g:_pga

The state equation

The relations:

of Kolmogorov

of Smagorinsky

of Poisson

P=pRT.

k=a.b* /¢,

2
As ) 1/2
kL:aLT(DT Ds) .

Q_T(looojR/" |

P
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Boundary conditions in vertical direction

1
3 2 2 é
at z=z5 u=0,v=0, w=0, k%=0, &= s , V*zzl{(ﬁ—uj +(8vj] ;

4 Kz oz oz

z=zp, p=pr,T =1r,m=mp, (subscript I' indicates values at a level 2m above underlying
surface).

at z=H u=ug,v=vy, T=Ty, m=my, k@:O,ka—g:O. (44)
oz oz

Here ¢ is time; u,v,w are the velocities along x—, y— axis, east— and northward
directed along a parallel, meridian, respectively, and z—axe, vertical coordinate measured
from the underlying surface z=z-TI"(x,y), where z is the vertical coordinate measured
from the sea level; p isthe density; p is the pressure; 7 is the temperature; 6 is the
potential temperature; &y is the radiative flux; m is the specific humidity; ¢ — the specific
heat, f is the Coriolis parameter; g is the gravitational acceleration; z, is the roughness
parameter; H is the atmosphere boundary layer height; As is the lateral mesh spacing;

=T (x,y) is the relief altitude above the sea ground; G = _a%x’ G, = _a%y — the

given functions of position, defining slope of the relief, o (with subscripts) is a universal
constants.

— Operator of a scalar advection

0 0 o(w
Ox oy 0z
where w=w+w» o, W = Gu+Gyy. (46)
— Operators of spatial derivatives taking into account orographic effects,
D D
M) o, 2 2 Y, 67, (47)
Dx ox oz Dy oy 0z
— Dr,Dg — longitudinal and transversal stress taking into account orographic effects
D D
Dy =22 = (48)
Dx Dy
pg = By D (49)
Dx Dy

In a horizontal plane a condition of the open boundaries as a condition of a radiation is
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put. It is realized with the help of approximations of the equation (10):

a—l//+c oy =0

W _y. 50
or | Ph gy, (50)

where ' =y —yq, w; — solution of an one—dimensional problem for required function y/,

n — exterior normal to the bound. The magnitude ¢ Dh is estimated on known values ' In

preceding instants ¢t — At and ¢ —2At¢ in two interior downwards knots of a regular grid.
At the initial instant ¢ =0 profiles of unknown quantities of magnitudes are given in all
knots of calculated area on one—dimensional variant of the ABL model.

3 Discussion and conclusions

Thus, the computational method for calculation of 3D pollutant concentration fields is
developed by means of physically grounded, high stable numerical scheme of alternating
direction. Integration of both schemes — the IAEA and the alternating direction scheme —
allows calculating concentration field in all 3D space surrounded a pollution source.

To calculate 3D distribution of transport velocity and turbulent parameters the model of
the geophysical boundary layer (GBL) is used. Results of application of the GBL model to
solution of the diffusion problem are presented in [3].

Figure 1 shows a calculated field of dust concentrations from a source with the
following parameters: ventilating grill height is 70 m, grill diameter is 3.2 m, dust exit
velocity is 5.5 m/s, dust temperature is 104°C, emission rate is 363.4 g/s, at Kharkiv for
1400 UTC 17 October 1989.

0 so o 1=sn Ao o Ao Hn dn D oOw o el
X,m

Fig. 1 — Pollutant concentration (g/m’) distribution at the 2-m height at Kharkiv for
1400 UTC 17 October 1989
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BblunciiuTebHBIA  AJATOPUTM  AJISl  pelleHUus] TPeXMEpPHOro HeCTAMOHAPHOIO
ypaBHeHuUs1 TypOyJieHTHOM Tu(Py31H HA OCHOBE METOAA NIePEeMEHHbIX HANIPABJICHHI

AuHoTanusi. [Ipednacaemcss memoo peuienusi ROIYIMIUPUYECKO2O MPEXMEPHO20 VPAGHEHUsT mypOyieHmHOU
oupysuu na ocnose memooa nepemennvix Hanpaeienuil. I[Ipeumywecmeo 0anHol cxemvl 3aKmouaemcs 6 eé
@usuueckoli 060CHOBAHHOCIIU U GbICOKOU Yycmouuusocmu. Pazpabomannulii uuciennviil aneopumm no3eoisiem
sKIIOYUMb OJIOK pacuema pacceusanuss npumecei 8 Mooelb MPexmMepHO20 HeCMAYUOHAPHO20 NOSPAHUYHOZO
cnost ammocgepul.
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