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Abstract. Solution of the 3D turbulent diffusion equation, based on the alternating direction method, is 
proposed. The advantage of this scheme is its physical validity and high stability. The numerical algorithm, 
developed, allows including the computing unit of air pollution dispersion in the 3D unsteady boundary layer of 
the atmosphere. 
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1 Problem statement 
 

At some height a continuous point source creates “looping” pollutant plume. The plume 
moves in the downwind direction and in the calculation domain it creates the 2D air pollutants 
concentration fields (x, y and y, z), which are used as lateral boundary conditions for the 
turbulent diffusion equation during all calculation time. Under the action of wind and 
atmospheric turbulence the contaminants on lateral surfaces are transferred into the 
calculation domain and dispersed within it. 

The problem is to calculate the spatial–temporal distribution of pollutant concentrations 
for a period of time T  (till 6 hours), for which the meteorological conditions are possible to 
consider as constant. 
 
2 Solution method 
 

At some distance from a continuous point source the plume is conditionally broken on 
two subregions. In the near subregion the air pollutant distribution may be estimated by the 
Gaussian model, in distant subregion – the pollutant distribution is described by the turbulent 
diffusion equation (TDE). 

The sizes of the near zone do not exceed a distance, at which the IAEA model is 
applicable. For the distant zone the TDE is solved. 

According to the Gaussian plume model for a continuous point source, located at the 
height H above an underlying surface, the volumetric pollutant concentration  , ,q z   is 

obtained from a formula: 
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where:   is the along–wind coordinate measured in wind direction,   is the cross–wind 

coordinate direction, z  is the vertical coordinate measured from the ground, 0 , 0  are the 

horizontal coordinates of a pollutant source, H  is the source height, M  is the mass 
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emission rate, U  is the velocity of pollutant transport in the direction of x–axe (m/s), y , z  

are the lateral and vertical dispersion parameters, respectively. 
These diffusion parameters are power functions of the distance   from a source. 

 

, ,jq
j j j z     .                                                     (2) 

 
The factors jP  and jq  are defined as functions of the stability category and effective 

stack height. 
In the near zone and, hence, in the distant three-dimensional area the pollutant 

concentrations is determined using the standard meteorological information and source 
parameters. 

To calculate the pollutant concentrations in the distant zone the turbulent diffusion 
equation for pollutant is used: 
 

0x y z
q q q q q q q

u v w K K K q
t x y z x x y y z z

         
       

         
,         (3) 

 
where: x , y  – arbitrary horizontal coordinates in the distant zone; 

u , v , w  – transport velocity in the direction of x –, y –, z –axes, respectively; 

xK , yK , zK  – eddy diffusivities in the direction of x –, y –, z –axes, respectively; 

  – coefficient of pollutant transformation in chemical reactions. 

To choose xK , yK , zK  it is necessary to take into account scales of pollutant clouds, 

as their values is significantly depend on sizes of vortexes, participating in the pollutant 
dispersion. However we shall examine only such cases, under which the sizes of a pollutant 
cloud observed at a sufficiently long distance from the source, is great, and the eddy 
diffusivities for pollutant coincide with the eddy diffusivities for meteorological magnitudes: 
 

x y LK K k  ,                                                        (4a) 

 

zK k ,                                                             (4b) 

 
where Lk , k  are lateral and vertical eddy diffusivities for momentum, respectively. 

Taking into account (4) the equation (3) can be written as: 
 

0.L L
q q q q q q q

u v w k k k q
t x y z x x y y z z

         
       

         
              (5) 

 
To solve the equation (5) it is necessary to specify initial and boundary conditions. The 

initial conditions at 0t t  is defined, assumed that at the upwind side of the calculation 

domain (the far zone) the pollutant concentrations, produced with the IAEA model for the 
near zone, are saved during all calculation time. In other points of the distant zone at the 
initial time the air is considered to be completely "pure" from pollutant. Thus, the pollutant 
concentrations instead of source parameters are used in the calculation domain, and it is rather 
significant for constructing of numerical solution algorithm. 
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The boundary conditions are determined from the following physical reasons. In 
increasing distance from the underlying surface, i.e. in approaching to the upper bound of the 
atmosphere boundary layer (ABL), the atmospheric turbulence gradually reduces, therefore it 
is naturally assumed that the vertical eddy pollutant flux becomes equal to zero at the upper 
bound of the ABL: 

0
q

k
z





.                                                                 (6) 

 
We shall specify the lower boundary condition as the following: 

 

0g d
q

k W q V q q
z


  


       at     0z z ,                                     (7) 

where: gW  – gravitational settling velocity for particles (under influence of the gravity force 

particles deposit on the underlying surface) in ms-1; 

dV  – dry deposition velocity of particles (ms-1); 

  – coefficient of particle rising, affected with the wind (m-1); 

0q  – initial areal pollutant concentration (gm-2). 

As the first approximation the effect of particle rising, affected with the wind, will be 
excluded. Then, rewrite the condition (7) in the following form: 
 

g d
q

k W q V q
z


 


,       at   0z z                                           (8) 

 

By performing the sum of the turbulent 
q

k
z




 and gravitational gW q  parts as the eddy 

fluxes of pollutant near the surface ( S ), (8) can be written as: 
 

 , , ,dS V q x y z t ,      at     0z z                                        (9) 

 
At leeward lateral boundaries "radiation conditions", that is the open boundary 

conditions, are specified: 
 

0ph
q q

C
t n

 
 

 
,                                                     (10) 

 
where phC  – phase velocity of the sum wave in a solution at the boundary at the given time. 

Thus, we described the problem of spatial–temporal distribution of pollutant 
concentrations in three-dimensional domain, assumed that leeward side concentrations, wind 
speed components, lateral and vertical eddy diffusivities, dry deposition velocity of particles 
and coefficient of pollutant transformation in chemical reactions, are specified,. 

The computational algorithm is constructed on the base of the alternating directions 
method. This method is to calculate the function q  at time 0t t t   with three successive 

fractional steps, provided that the field of 0q  is known at the instant 0t t  . At each fractional 

step, by–turn, calculation is carried out for half–time step and the whole time step by the 
modified Lax–Wendroff (LW) scheme. The primary equation is approximated at each 
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half-time step: implicitly x –direction, and explicitly y -, z –directions for the first fractional 
step; implicitly y –direction, and explicitly x -, z -directions for the second fractional step; 
implicitly z –direction, and explicitly x -, y -directions for the third fractional step. The 
primary equation is approximated at each whole time step implicitly, and therefore it turns in 
a three–point one–dimensional equation, which is easily realized by the one–dimensional 

factorization method. The result is presented as 1 3q  in the x –axe direction at the first 

factorization stage, as 2 3q  in the y –axe direction at the second one and as 1q  in the z –axe 
direction at the third one. 

To realize numerical solution of the three-dimensional equation, it is necessary to 
construct a 3D mesh. It is necessary to note, that at the half–time step the additional nodes are 
located in the middle of grid element. It is a possibility to reduce calculation to 
one-dimensional factorization. So, the calculation mesh may be chosen as: 
 

  , , ; , ; , 1, ; 1, ; 1,P x y z x i x y j y z k z i I j J k K             

 
where: x , y , z  – mesh spacing in the directions of x –, y –, z –axis , respectively; 

i , j , k  – grid node numbers in the direction of x –, y –, z –axes, respectively. 
The mesh spacing in the x , y  directions are constant; outward from the underlying 

surface in the z  direction the spacing z  depends on the value H k , where H  – height of 
the boundary layer, k  – number of nodes in the direction of z –axe. 

Below numerical scheme of the turbulent diffusion equation solution, including 
quantitative evaluation of initial data, is presented. It consists of preparatory stage and 
realization stage. At the preparatory stage the input of source parameters, calculation of wind 
speed components and turbulent characteristics in the ABL model, determination of pollutant 
concentrations is fulfilled for the calculation domain. At the realization stage a solution of 
TDE is carried out with the following scheme: 
 
Realization of the first fractional step: 

- Calculation of intermediate values at the instant 0 2

t
t t


  ; 

- Determination of q1/3 at time 0t t t  ; 

Realization of the second fractional step: 

- Calculation of intermediate values at the instant 0 2

t
t t


  ; 

- Determination of q2/3 at time 0t t t  ; 

Realization of the third fractional step: 

- Calculation of intermediate values at the instant 0 2

t
t t


  ; 

- Determination of q1 at time 0t t t  . 

 
At a preparatory stage the input data (wind speed components, u , v , w ; lateral and 

vertical eddy diffusivities, Lk  and k ) are specified with the ABL model. 

To approximate the equations at each fractional step two finite difference operators are 
used: 
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Centered difference operator: 
 

   1

2x q q x x q x x
x    


  


      ,                               (17) 

 
Smoothing operator: 
 

   1

2
xq q x x q x x          .                                      (18) 

 
We will write the whole time step equation for the first fractional step: 

 
1/ 3 0 0 0

1 2 3
c

x l y f z upq q r q r q r q q          

1/ 2 1/ 3 1/ 2 0 1/ 2 0( ) ( ) ( )x S x y S y Z Zt K q K q K q          
,                    (19) 

 

where 
1

2; 1,2,3i it r t u i        . 

 

To transform (19) in the equation for 1 3q , three fields of lq , fq , upq  should be 

defined: 
 

0 0 0 0
1 2 3

1

2

xyyzz xyzz xyyz

l x y zq q r q r q r q  
   

    
 
 

,                            (20) 

 

0 0 0 0
1 2 3

1

2

xxyzz xyzz xxyz

f x y zq q r q r q r q  
   

    
 
 

,                          (21) 

 

0 0 0 0
1 2 3

1

2

xxyyz xyyz xxyz

up x y zq q r q r q r q  
   

    
 
 

.                         (22) 

 

In relation (20) lq  differs from lq  in that implicit approximation is used for the 

term 
q

u
x




. Similarly, in (21) rq  differs from rq  – implicit approximation for the term 
q

v
y




, 

in (22) upq  from upq  – implicit approximation for the term 
q

w
z




. 

 
Thus 

 

 1/ 3 01

2l l x x
r

q q q q      ,                                           (23) 
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 2 / 3 02

2f f y y
r

q q q q      ,                                         (24) 

 

 3/ 3 03

2up up z z
r

q q q q      .                                       (25) 

 
Taking into account (20)–(25) the equation (19) becomes: 

 
1/ 3 0 1/ 3 0 01

1 2 3( ( ))
2x l x x y r z up
r

q q r q q q r q r q q              

1/ 2 1/ 3 1/ 2 0 1/ 2 0( ( ) ( ) ( )x S x y S y Z Zt K q K q K q          
(26)

 
We shall note the whole time step equation for the second fractional step: 

 
2 / 3 0 0 0

1 2 3x l y r z upq q r q r q r q q           

1/ 2 1/ 3 1/ 2 2 / 3 1/ 2 0( ) ( ) ( )x S x y S y Z Zt K q K q K q          
 

(27)

 
Subtracting (27) from (19) and taking into account (21) and (24) we get the equation 

for 2 3q : 
 

2 / 3 2 / 3 1/ 2 2 / 32
2( ) ( )

2 y y y S
r

q r q t K q        

1/ 3 0 1/ 2 02
2( ) ( )

2 y y y S y
r

q r q t K q        
(28)

 
For the third fractional step the whole time step equation may be written in the 

following form: 
 

3 / 3 0 0
1 2 3x l y r z upq q r q r q r q q            

1/ 2 1/ 3 1/ 2 2 / 3 1/ 2 3/ 3( ) ( ) ( )x S x y S y Z Zt K q K q K q          
 

(29)

 

Subtract (29) from (27) taking into account (22) and (25), the equation for 1q  is 
derived: 
 

1 1 1/ 2 1 2 / 3 0 1/ 2 03 3
3 3( ) ( ) ( ) ( )

2 2Z Z Z Z Z Z Z Z
r r

q r q t K q q r q t K q                .  (30) 

 
Substitution of the finite difference operators (17), (18) in the equations (26), (28) and 

(30) yields: 
 

 1 3 1 3 1 3 1/ 3
1, , , , 1, , , ,

i i i qi j k i j k i j k i j k
a q b q c q F    ,                           (31a) 
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 2 3 2 3 2 3 2 / 3
, 1, , , , 1, , ,

j j j qi j k i j k i j k i j k
a q b q c q F    ,                            (31b) 

 1 1 1 1
, , 1 , , , , 1

, ,
k i j k k i j k k i j k q

i j k
a q b q c q F    ,                              (31c) 

 

where all factors , ,i j ka a a  and the right terms  
, ,q i j k

F  in these equations are expressed in 

terms of the variables , , , ,Lu v w k k  and q  obtained at the previous instant. These equations 

are solved with the one–dimensional factorization method in the direction of x –, y –, z -axes. 

The field of q  at time 0t t t   is derived at the last factorization stage. Then the obtained 

field q  is used as the initial condition for calculation of the concentration field at the 

following instant 0 2t t t  . Repeating such solution procedure, the pollutant concentration 

field may be derived at any time t . 
At the preparatory stage the three-dimensional non-stationary ABL model, which is 

based the closed set of equations of the hydrothermodynamics, is used. 
This model includes the evolutionary (momentum, heat, moisture transport) and 

diagnostic (statics, state and continuity) equations. The closure is realized with the turbulence 
kinetic energy (b ) budget equation, dissipation ( ) equation and Kolmogorov relation, 
connecting the vertical eddy diffusivity k  with b  and  . The description of horizontal 
turbulent mixing is based on undergrid lateral eddy diffusivity LK , which is estimated with 

the Smagorinsky formula. We shall write the equations of the hydrothermodynamics in the 
Cartesian Coordinates. 
 
 
The equations: 
 
The momentum equations 
 

     1
( ) ‹ ‹ ‹

L T L n
D p D Du u

A u fv k k D k D
t Dx z z Dx Dy

  
      

  
,           (32) 

 

     1
( ) ‹ ‹ ‹

L n L T
D p D Dv v

A v fu k k D k D
t Dy z z Dx Dy
  

      
  

,           (33) 

 
The thermodynamic energy equation 
 

   
( ) ‹ ‹‹ ‹

L L R
D DD D

A k k k Lc
t z z Dx Dx Dy Dy

    
     

              
,     (34) 

 
The moisture budget equation 
 

   
( ) ‹ ‹‹ ‹

m L L
D m D mD Dm m

A m k k k
t z z Dx Dx Dy Dy


     

            
,        (35) 
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The turbulent kinetic energy budget equation 
 

2 2
2 2( ) ( )L S T T b

b u v g b
A b k k D D k k

t z z z z z

 


                              
 

    2

L L
D b D bD D b

k k
Dx Dx Dy Dy k

     
     

   
 

(36)

 
The dissipation equation 
 

2 2
2 2

1 4 2( ) ( )L S T
u v g

A k k D D k k
t b z z b z z z

       


                                   
 

    2

3L L
D DD D

k k
Dx Dx Dy Dy b

       
     

   
 

(37)

 
The continuity equation: 
 

0
u v w

x y z

  
  

  
,                                                       (38) 

 
The hydrostatic equation 
 

p
g

z


 


,                                                           (39) 

 
The state equation 
 

P RT .                                                            (40) 
 
The relations: 
 
of Kolmogorov 
 

2 /k b  ,                                                        (41) 

 
of Smagorinsky 
 

 
2 1/ 22 2

2L L T S
s

k D D 
  .                                           (42) 

of Poisson 
 

1000 pR c

T
P

    
 

.                                                 (43) 
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Boundary conditions in vertical direction 
 

at 

1
2 2 23

2*
0 *

0
0, 0, 0, 0, ,

Vb u v
z z u v w k V k

z z z z




                        
; 

 
, , ,z z p p T T m m       , (subscript Г indicates values at a level 2m above underlying 

surface). 
 

at , , , , 0, 0H H H H
b

z H u u v v T T m m k k
z z

 
      

 
.                                      (44) 

 
Here t  is time; , ,u v w  are the velocities along x  , y   axis, east– and northward 

directed along a parallel, meridian, respectively, and z  axe, vertical coordinate measured 
from the underlying surface  ,z z x y  , where z  is the vertical coordinate measured 

from the sea level;   is the density; p  is the pressure; T  is the temperature;   is the 

potential temperature; R  is the radiative flux; m  is the specific humidity; c  – the specific 

heat, f  is the Coriolis parameter; g  is the gravitational acceleration; z0  is the roughness 
parameter; Н  is the atmosphere boundary layer height; s  is the lateral mesh spacing; 

 ,x y    is the relief altitude above the sea ground; 1G x
   , 2G y

    – the 

given functions of position, defining slope of the relief;   (with subscripts) is a universal 
constants. 
 
– Operator of a scalar advection 
 

     
( )

wfuf vf
A f

x y z

 
  

  


,                                          (45) 

 
where р р 1 2,” ”w w w w G u G v    .                                                                                  (46) 

 
– Operators of spatial derivatives taking into account orographic effects, 
 

   
1 2,‹ ‹D f D ff f f f

G G
Dx x z Dy y z

   
   

  
;                            (47) 

 
– ,T SD D  – longitudinal and transversal stress taking into account orographic effects 

 

‹ ‹
T

D u D v
D

Dx Dy
  ,                                                     (48) 

 

‹ ‹
S

D v D u
D

Dx Dy
  .                                                     (49) 

 
In a horizontal plane a condition of the open boundaries as a condition of a radiation is 
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put. It is realized with the help of approximations of the equation (10): 
 

0phc
t n

   
 

 
,                                                    (50) 

 
where 1     , 1  – solution of an one–dimensional problem for required function  , 

n  – exterior normal to the bound. The magnitude phc  is estimated on known values    In 

preceding instants t t   and 2t t   in two interior downwards knots of a regular grid. 
At the initial instant 0t   profiles of unknown quantities of magnitudes are given in all 

knots of calculated area on one–dimensional variant of the ABL model. 
 
3 Discussion and conclusions 
 

Thus, the computational method for calculation of 3D pollutant concentration fields is 
developed by means of physically grounded, high stable numerical scheme of alternating 
direction. Integration of both schemes – the IAEA and the alternating direction scheme – 
allows calculating concentration field in all 3D space surrounded a pollution source. 

To calculate 3D distribution of transport velocity and turbulent parameters the model of 
the geophysical boundary layer (GBL) is used. Results of application of the GBL model to 
solution of the diffusion problem are presented in [3]. 

Figure 1 shows a calculated field of dust concentrations from a source with the 
following parameters: ventilating grill height is 70 m, grill diameter is 3.2 m, dust exit 
velocity is 5.5 m/s, dust temperature is 1040C, emission rate is 363.4 g/s, at Kharkiv for 
1400 UTC 17 October 1989. 
 

 
 
Fig. 1 – Pollutant concentration (g/m3) distribution at the 2–m height at Kharkiv for 

1400 UTC 17 October 1989 
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Вычислительный алгоритм для решения трехмерного нестационарного 
уравнения турбулентной диффузии на основе метода переменных направлений 
 
Аннотация. Предлагается метод решения полуэмпирического трехмерного уравнения турбулентной 
диффузии на основе метода переменных направлений. Преимущество данной схемы заключается в её 
физической обоснованности и высокой устойчивости. Разработанный численный алгоритм позволяет 
включить блок расчета рассеивания примесей в модель трехмерного нестационарного пограничного 
слоя атмосферы. 
 
Ключевые слова: уравнение турбулентной диффузии, концентрации примесей, метод переменных 
направлений, модифицированная схема Лакса-Вендорфа 


