Simulations of PM10, PM2.5 and Other Pollutants During Winter 2003 in Germany: a Model Experiment with MM5-CMAQ and WRF/CHEM Models

Authors: San José R., Pérez J.L., Morant J.L., González R.M.

Year: 2009

Issue: 04

Pages: 202-209

Abstract

We have applied the MM5-CMAQ model to simulate the high concentrations in PM10 and PM2.5 during a winter episode (2003) in Central Europe. The selected period is January, 15 -April, 6, 2003. Values of daily mean concentrations up to 75  gm -3 are found on average of several monitoring stations in Northern Germany. This model evaluation shows that there is an increasing underestimation of primary and secondary species with increasing observed PM10. The high PM levels were observed under stagnant weather conditions, that are difficult to simulate. The MM5 is the PSU/NCAR non-hydrostatic meteorological model and CMAQ is the chemical dispersion model developed by EPA (US) used in this simulation with CBM-V. The TNO emission inventory was used to simulate the PM10 and PM2.5 concentrations with the MM5-CMAQ model. The results show a substantial underestimation of the elevated values in February and March, 2003. An increase on the PM2.5 emissions (five times) produces the expected results and the correlation coefficient increases slightly. The WRF/CHEM model results show an excellent performance with correct emission database. The main difference between MM5-CMAQ simulations and WRF/CHEM is the MOSAIC particle models and the “classical” MADE/SORGAM particle model used in WRF/CHEM and CMAQ respectively. MOSAIC seems to make a better job than MADE particle model for this particular episode.

Tags: air particles; air quality models; emissions; PM10 and PM2.5

Bibliography

  1. Amann, M., I. Bertok, J. Cofala, F. Gyarfas, C. Heyes, Z. Klimon (2005) BaselineScenarios for the Clean Air for Europe (CAFE) Programme. Final Report, InternationalInstitute for Applied Systems Analysis, Schlossplatz 1, A–2361 Laxenburg, Austria.
  2. Beekmann, M., A. Kerschbaumer, E. Reimer, R. Stern, D. Möller (2007) PM MeasurementCampaign HOVERT in the Greater Berlin area: model evaluation with chemicallyspecified observations for a one year period. Atmos. Chem. Phys., 7, pp. 55–68.
  3. Byun, D.W., J. Young, G. Gipson, J. Godowitch, F. Binkowsky, S. Roselle, B. Benjey, Pleim, J.K.S. Ching, J. Novak, C. Coats, T. Odman, A. Hanna, K. Alapaty, R. Mathur,J. McHenry, U. Shankar, S. Fine, A. Xiu, and C. Lang. (1998) Description of the Models-3Community Multiscale Air Quality (CMAQ) model. Proceedings of the AmericanMeteorological Society, 78th Annual Meeting Phoenix, AZ, Jan. 11–16, pp. 264–268.
  4. Carter, W.P.L. (2007) Development of the SAPRC-07 Chemical Mechanism and UpdatedOzone Reactivity Scales. Final report to the California Air Resources Board Contract, 03-318, August. Available at http://www.cert.ucr.edu/~carter/SAPRC.
  5. Collins, W.J., D.S. Stevenson, C.E. Johnson and R.G. Derwent (1997) Tropospheric ozonein a global scale 3D Lagrangian model and its response to NOx emission controls. Atmos. Chem., 86, pp. 223–274.
  6. Derwent, R., and M. Jenkin (1991) Hydrocarbons and the long-range transport of ozoneand PAN across Europe. Atmospheric Environment 8, pp. 1661–1678.
  7. Gardner, R.K., K. Adams, T. Cook, F. Deidewig, S. Ernedal, R. Falk, E. Fleuti, E. Herms, Johnson, M. Lecht, D. Lee, M. Leech, D. Lister, B. Masse, M. Metcalfe, P. Newton,A. Schmidt, C Vandenberg. and R. van Drimmelen (1997) The ANCAT/EC globalinventory of NOx emissions from aircraft. Atmospheric Environment 31, pp. 1751–1766.
  8. Gery M.W., G.Z. Whitten, J.P. Killus and M.C. Dodge (1989) A photochemical kineticsmechanism for urban and regional scale computer modelling. Journal of GeophysicalResearch 94, D10, pp. 12925–12956.
  9. Grell, G.A., J. Dudhia and D.R. Stauffer (1994) A description of the Fifth-GenerationPenn State/NCAR  Mesoscale  Model  (MM5).  NCAR/TN–398+STR,NCAR Technical Note.
  10. Guenther A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher,R. Tallamraju, J. Taylor and P. Zimmerman (1995) A global model of natural volatileorganic compound emissions, Journal of Geophysical Research 100, pp. 8873–8892.
  11. Jacobson M.Z. and R.P. Turco (1994) SMVGEAR: A sparse-matrix, vectorized GEARcode for atmospheric models. Atmospheric Environment 28, 2, pp. 273–284.
  12. Janjic, Z. I., J. P. Gerrity, Jr. S. Nickovic (2001) An Alternative Approach toNonhydrostatic Modeling. Monthly Weather Review, Vol. 129, pp. 1164-1178
  13. Langner J., R. Bergstrom and K. Pleijel (1998) European scale modeling of sulfur,oxidized nitrogen and photochemical oxidants. Model development and evaluation for the1994 growing season. SMHI report RMK No. 82, Swedish Met. And Hydrol. Inst.,SE–601 76 Norrkoping, Sweden.
  14. Putaud, J., F. Raesa, R. Van Dingenen, E. Bruggemann, M. Facchini, S. Decesari, Fuzzi, R. Gehrig, C. Hueglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mihalopoulos,K. Mueller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Torseth,A. Wiedensohler (2004) A European aerosol phenomenology – 2: chemical characteristicsof particulate matter at kerbside, urban, rural and background sites in Europe.Atmospheric Environment 38, pp. 2579–2595.
  15. Roemer M., G. Boersen, P. Builtjes and P. Esser (1996) The Budget of Ozone andPrecursors over Europe Calculated with the LOTOS Model. TNO publication P96/004,Apeldoorn, The Netherlands.
  16. San José R., L. Rodriguez, J. Moreno, M. Palacios, M.A. Sanz and M. Delgado (1994)Eulerian and photochemical modelling over Madrid area in a mesoscale context.Air Pollution II, Vol I., Computer Simulation, Computational Mechanics Publications, Baldasano, Brebbia, Power and Zannetti, pp. 209–217.
  17. San José R., J. Cortés, J. Moreno, J.F. Prieto and R.M. González (1996) Ozone modellingover a large city by using a mesoscale Eulerian model: Madrid case study, Developmentand Application of Computer Techniques to Environmental Studies, ComputationalMechanics Publications, Ed. Zannetti and Brebbia, pp. 309–319.
  18. San José, R., J.F. Prieto, N. Castellanos and J.M. Arranz (1997) Sensitivity study of drydeposition fluxes in ANA air quality model over Madrid mesoscale area, Measurementsand Modelling in Environmental Pollution, Ed. San José and Brebbia, pp. 119–130.
  19. Schmidt H., C. Derognat, R. Vautard and M. Beekmann (2001) A comparison ofsimulated and observed ozone mixing ratios for the summer 1998 in Western Europe,Atmospheric Environment 35, pp. 6277–6297.
  20. Schaap, M., H. Denier van der Gon, A. Visschedijk, M. van Loon, H. ten Brink, Dentener, J. Putaud, B. Guillaume, C. Liousse, P. Builtjes (2004а) AnthropogenicBlack Carbon and Fine Aerosol Distribution over Europe, J. Geophys. Res., 109, D18207,DOI:10.1029/2003JD004330.
  21. Spindler, G., K. Mueller, E. Brueggemann, T. Gnauk, H. Herrmann (2004) Long-termsize-segregated characterization of PM10, PM2.5, and PM1 at the IfT research stationMelpitz downwind of Leipzig (Germany) using high and low-volume filter samplers.Atmospheric Environment 38, pp. 5333–5347.
  22. Stockwell W., F. Kirchner, M. Kuhn and S. Seefeld (1977) A new mechanism for regionalatmospheric chemistry modeling, J. Geophys. Res. 102, pp. 25847–25879.
  23. Visscherdijk, A. and H. Denier van der Gon (2005) Gridded European anthropogenicemission data for NOx, SO2, NMVOC, NH3, CO, PM10, PM2.5 and CH4 for theyear 2000. TNO-report B&O-AR, 2005/106.
  24. Walcek C. (2000) Minor flux adjustment near mixing ration extremes for simplified yethighly accurate monotonic calculation of tracer advection. J. Geophys. Res. 105, 9335–9348.
Download full text (PDF)