Numerical prognosis of three-dimensional distribution of meteorological and turbulent variables

Authors: V.А. Shnaidman, L.V. Berkovich, Yu.V. Tkacheva

Year: 2013

Issue: 12

Pages: 10-24


This research makes it possible to improve the short-term numerical prognosis of meteorological and turbulent variables, using equations of hydrodynamics and the closure technique of two equations of turbulence, including the TKE budget and TKE dissipation equations.
Basic equations are shown within the framework of the K-theory for non-stationary, stratified, bariclinic, hydrostatical atmosphere in the isobaric coordinates and Cartesian coordinate system. The finite-difference equation is solved with method of successive approximations. It allows applying implicit time integration, which provides the calculated stability and positive values of TKE and dissipation.
The two-day prognosis of meteorological and turbulent variables is obtained for the North hemisphere. The spatial distribution of meteorological and turbulent variables is analyzed for the region of 0–45E, 40–65N.
The analysis shows strong turbulence at midday in the condition of the unsteady stratification and absence of turbulence at night for the steady one.
Variables of atmospheric boundary layer are calculated with the 50 m vertical step in the 3-km layer in the net points for hilly and mountainous areas. Prognostic results depict quantitative correlations between temperature stratification, the wind shift and turbulent parameters. Comparison of meteorological conditions in the areas of turbulence shows that in the day hours strong turbulence develops at identical meteorological conditions in both areas, but in the night time the turbulence disappears faster at strong steady stratification for hilly areas, than for mountain ones. The results of analysis of prognostic structure of turbulence show that in the second half of day and in the early morning (transitional period) there are separate residual layers, where turbulence is still active, developing higher steadily to stratified lower part of boundary layer. The quantitative parameters of turbulence and meteorological terms of separate residual layers are presented.

Tags: hydrodynamic equations; implicit integration; method of successive approximations; short-term prognostication; turbulent closure


  1. Abdella and Mcfarlane ( 2001) Modeling boundary layer clouds with a statistical cloud scheme and a second-order turbulence closure. Boundary-Layer Meteorol 98:387-410
  2. Bougeault P, Lacarrére P (1989) Parameterization of topography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117:1872–1890
  3. Braun SA, Tao W-K (2000) Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon Weather Rev 128:3941-3961
  4. Ca V, Ashie Y (2002) K-epsilon turbulence closure model for the atmospheric boundary layer including urban canopy. Boundary-Layer Meteorology 102:459-490
  5. Cheng Y, Canuto V, Howard A (2002) An improved model for turbulent PBL. J Atmos.Sci 59:1550-1565
  6. Cotton W, Pielke R, Walko R (2003) RAMS 2001: Current status and future directions. Meteor Atmos. Phys 82:5-29
  7. Cuxart J, Holtslag A, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303
  8. Deardorff J (1974) Three – dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7:81-106
  9. Helfand H, Labraga J (1988) Design of a non-singular level 2.5 second-order closure model for prediction of atmospheric turbulence. J Atmos Sci 45:113-132
  10. Hong S-Y(2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J Roy Meteorol Soc 136:1481–1496
  11. Hong S-Y, Pan H-L (1996) Non-local boundary layer vertical diffusion in a mediumrange forecast model. Mon Weather Rev 124:2322–2339
  12. Huber A, Tang W, Flowe A (2004) Development and applications of CFD simulations in support of air quality studies involving buildings. Preprints, 13th Joint conference on the applications of air pollution meteorology, US EPA, New York
  13. Janjic G (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso-model. NCEP Office Note 461, Washington
  14. Jiang W, Zhou M, Xu M (2002) Study on development and application of a regional PBL numerical model. Boundary-Layer Meteorol 104: 491-503
  15. Lesieur M, Metais O, Compte P (2002) Large-scale simulation in turbulence. Cambridge U Press, New York
  16. Li X, Pu Z (2008) Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon Weather Rev 136:19–48
  17. Lothon M, Lenschow D (2010) Studying the Afternoon Transition of the Planetary Boundary Layer. EOS (American Geophysical Union) vol. 91, №29
  18. Marht L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375-396
  19. Mellor G, Yamada T (1982) Development of turbulent closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851-875
  20. Michalakes J, Dudhia J, Gill D (2004) The weather research and forecast model. In:Proccedings of Eleventh ECMWF Workshop, Reading
  21. Moeng C, Wyngaard J (1989) Evaluation of turbulent and dissipation closures in secondorder modeling. J Atmos Sci 46:2311-2330
  22. Nakanishi M (2001) Improvement of the Mellor-Yamada turbulence closure model based on the large-eddy simulation data. Boundary-Layer Meteorol 90:375-396
  23. Noh Y, Cheon W-G, Hong S-Y (2003) Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorol 107:401–427
  24. Pino D, Jonker J, Vilà-Guerau de Arellano, Dosio A (2006), Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales, Boundary Layer Meteorol., 121: 537–556
  25. Pleim J (2007a) A combined local and non-local closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Clim 46:1383–1395
  26. Pleim J (2007b) A combined local and non-local closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model. J Appl Meteorol Clim 46:1396–1409
  27. Shin Hyeyum Hailey, Hong Song You (2011) Intercomparison of planetary boundarylayer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139:261-281
  28. Шнайдман В.А. и др. (1997) Гидродинамическая модель атмосферного и океанического пограничного слоя. Метеорология и гидрология №7:40-52
  29. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X-Y, Wang W, Powers J (2008) A description of the advanced research WRF version 3. NCAR TECHNICAL NOTE, NCAR/TN-475+STR, 113 pp
  30. Steeneveld G,Mauritsen T, De Bruijn E, De Arellano J, Svensson G, Holtslag A (2008) Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J Appl Meteorol Clim 47:869–887
  31. Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorol 117:231–257
  32. Svensson G, Holtslag A (2006) Single column modeling of the diurnal cycle based on CASES99 data-GABLS second intercomparison project. In: 17th symposium on Boundary layers and turbulence. American Meteorological Society, San Diego, CA, Paper 8.1
  33. Wensong W, Taylor P (2003) On modeling the one-dimensional atmospheric boundary layer. Boundary-Layer Meteorol 107:371-400
Download full text (PDF)